Math 10 HW Sheets

Nicholas Cragg Knack Publishing www.knackacademics.com nick@knackacademics.com 604.505.2867

M10-1.1-1 Step SI/Imperial Conversion Factors HW

How many centimetres in the 100 m dash?

How many kilometres in 650 m?

How many inches in a 4 yard truck?

How many feet in a two meter tall person?

How many feet and inches in 75 inches?

How many meters in 2.4 km?

How many yards in 3 miles?

How many miles in 25,000 feet?

How many meters to the moon in $384,000 \mathrm{~km}$?

How many pounds in 84 kg ?

M10-1.1-2/3 Step SI/Imperial Conversion Factors HW

How many meters in 250 inches?

How many centimetres in 6 feet?

How many yards in $12,000 \mathrm{~cm}$?

How many seconds in a day?

How many inches in 12 m?

How many feet are in 2.2 km ?

How many centimetres in a mile?

M10-1.1 - Converting Squared and Cubed Units Notes HW

How many centimetres squared in two meters squared?

How many feet squared in 4 yards squared?

How many meters cubed in 2 km cubed?

How many centimetres squared in a circle with a radius of 5 m ?

How many centimetres cubed in 1 km cubed?

How many millilitres of water in 10 kg of water?

M10-1.2-Conversion 1st vs 2nd HW

Draw a diagram and solve

Find the Area in cm^{2}
A rectangle $4 \mathrm{~m} \times 5 \mathrm{~m}$.

Find the Area in $f t^{2}$
A rectangle 44 in $\times 55$ in.

Find the mass in Kilograms of five mega litres of water?

M10-1.3-Scientific Notation Conversion Factors HW

Conversion Factors
Prefixes
How many Meters are in 100 Micrometers?

How many meters to the moon in $380,000 \mathrm{~km}$?

How many kilobytes in 4 Gigabytes?

How many milligrams in 52 kilograms?

M10-2.1-Surface Area Cone/Sphere HW

Calculate the following Surface Area and Volume.

M10-2.2 - Surface Area/Volume Square Pyramid (pythag) HW

Calculate the following Surface Area and Volume with both Methods.

M10-2.3-Surface Area/Volume Rectangular Pyramid HW

Calculate the following Surface Area and Volume with both Methods.

18 cm

M10-2.4-Surface Area/Volume Missing Length HW

Find the missing length for the shapes below.

$$
S A=29 \mathrm{in}^{2}
$$

$$
V=183.26 f t^{3}
$$

M10-2.5-Composite Shapes HW

Find the Volume and Surface Area of the composite shape below.

M10-3.1-Trig Label Sides HW

Label Hypotenuse, Opposite, and Adjacent to θ (the angle)

Label Hypotenuse, Opposite, and Adjacent to θ and β (the angle)

M10-3.1 - Trig Ratios HW

Label Hypotenuse, Opposite, and Adjacent to θ (the angle) and State the ratio.

$\sin \theta=$
$\cos \theta=$
$\tan \theta=$

8

©

M10-3.2 - Trig Ratios Calc HW

Plug into your Calculator to 3 Decimals, Draw a Triangle, State Meaning.

M10-3.2-Trig Ratios Solve Opp HW

Solve for Opposite.

Solve for Opposite.

Solve for Adjacent.

M10-3.2-- Trig Ratios Solve Hyp HW

Solve for Hypotenuse.

8

Solve for Adjacent.

99

Solve for Hypotenuse.

100

M10-3.2- Trig Angles Solve Theta HW

Solve for θ (the angle)

8

21

©

M10-3.3-Trig Cliff Word Problems HW

M10-3.3-Trig Review

Label Hypotenuse, Opposite, and Adjacent to θ (the angle)

Label Hypotenuse, Opposite, and Adjacent to θ (the angle) and State the ratio.

Solve on calculator to 3 decimals

Solve for Opposite.
Solve for Hypotenuse.
Solve for θ (the angle)

Solve for x. Find $\tan \theta$ and θ in both diagrams below.
12

12

Solve for x.

20

M10-4.1 - Entire to Mixed Radicals HW

Simplify

$$
\sqrt[2]{8}=
$$

M10-4.1 - Cube Entire to Mixed Radicals HW

Simplify
$\sqrt[3]{24}=$
$\sqrt[3]{-40}=$
$\sqrt[3]{48}=$
$\sqrt[3]{16}=$
$\sqrt[3]{128}=$
$\sqrt[3]{2187}=$
$\sqrt[3]{250}=$ $\sqrt[3]{686}=$
$\sqrt[3]{112}=$
$\sqrt[3]{625}=$
$\sqrt[3]{-50625}=$

M10-4.2-Mixed to Entire Radicals HW

Simplify

$2 \sqrt[2]{3}=$	$3 \sqrt[2]{2}=$
$4 \sqrt[2]{2}=$	
$4 \sqrt[2]{5}=$	$2 \sqrt[2]{7}=$
$10 \sqrt[2]{3}=$	$3 \sqrt[2]{7}=$

$4 \sqrt[2]{7}=$
$7 \sqrt[2]{6}=$
$8 \sqrt[2]{5}=$

M10-4.2 - Cube Root Mixed to Entire Radicals HW

Simplify
$2 \sqrt[3]{2}=$
$3 \sqrt[3]{5}=$
$7 \sqrt[3]{3}=$
$2 \sqrt[3]{8}=$
$7 \sqrt[3]{6}=$
$1 \sqrt[3]{686}=$
$2 \sqrt[3]{48}=$
$11 \sqrt[3]{6}=$
$2 \sqrt[3]{11}=$
$-5 \sqrt[3]{6}=$
$2 \sqrt[3]{18}=$
$3 \sqrt[3]{2187}=$
$10 \sqrt[3]{50625}=$

M10-4.3-Mult/Add Div/Divide Exponent Laws HW

Write each product of powers as a single power.
$x^{2} \times x^{2}=x^{2+2}=x^{4}$
$y^{3} \times y^{4}=$
$3^{2} \times 3^{2}=$
$z^{3} \times z^{2}=$
$m^{3} \times m^{4}=$
$n^{4} \times n^{2}=$
$2^{2} \times x^{3}=$
$(2 x)^{2} \times(2 x)^{3}=$
$(3 y)^{2} \times(2 y)^{2}=$

Write each quotient of repeated multiplication division statement in faction form then simplify as a single power.

$$
\begin{array}{lll}
x^{4} \div x^{2}=\frac{1 \times x \times x \times x}{x \times x}=x^{2} & x^{3} \div x^{2}= & y^{2} \div y^{2}= \\
z^{5} \div z^{2}= & x^{3} \div x^{3}= & x^{2} \div x^{3}= \\
(3 x)^{5} \div(3 x)^{3}= & (2 x)^{6} \div(2 x)^{3}= & (2 x)^{8} \div(2 x)^{7}=
\end{array}
$$

Write each quotient of powers as a single power.

$$
\begin{array}{lcc}
x^{4} \div x^{2}=x^{4-2}=x^{2} & y^{4} \div y^{2}= & m^{4} \div m^{3}= \\
g^{7} \div g^{4}= & (-2 x)^{5} \div(-2 x)^{3}= & (-4 x)^{8} \div(-4 x)^{7}=
\end{array}
$$

Write each quotient of powers as a single power.

$$
\begin{array}{lll}
\frac{x^{5}}{x^{2}}= & \frac{y^{2}}{y}= & \frac{(-3 x)^{4}}{(-3 x)^{2}}= \\
\frac{m^{5}}{m^{2}}= & \frac{b^{3}}{b^{2}}= & \frac{(-7 x)^{5}}{(-7 x)^{2}}=
\end{array}
$$

M10-4.3-Distribution Exponent Laws HW

Write the following as a single power.
$\left(x^{3}\right)^{2}=x^{3 \times 2}=x^{6}$
$\left(x^{2}\right)^{3}=$
$\left(y^{3}\right)^{2}=$
$\left(2 z^{2}\right)^{5}=$
$\left(3 x^{3}\right)^{4}=$
$\left(x^{-1}\right)^{2}=$

Write as a multiplication of two powers.

$$
[7 \times x]^{2}=7^{2} x^{2}=49 x^{2}
$$

$[5 \times y]^{2}=$
$[m \times n]^{2}$

Distribute the power.

$$
\left(\frac{x}{y}\right)^{2}=\quad\left(\frac{3 y}{2 x}\right)^{2} \quad\left(\frac{180 x^{2}}{6 x}\right)^{2}=
$$

$$
\left(\frac{24 x^{5}}{2 x^{4}}\right)^{2}=
$$

$$
\left(\frac{5 x y}{35 y^{2}}\right)^{2}=
$$

$$
\left(\frac{4 x}{4 x}\right)^{2}=
$$

M10-4.4- Negative Exponents HW

Write with positive exponents

$$
\begin{aligned}
& x^{-3}=\frac{1}{x^{3}} \\
& x^{-4}= \\
& \frac{1}{x^{-3}}= \\
& \frac{1}{x^{-4}}= \\
& x^{-2}= \\
& x^{-3}= \\
& x^{-2}= \\
& x^{-2}= \\
& 2 x^{-2}= \\
& 2^{-3} x= \\
& 2^{-3} x^{-2}= \\
& \frac{1}{2 x^{-2}}= \\
& \frac{1}{2^{-3} x}= \\
& \frac{1}{2^{-3} x^{-2}}= \\
& \frac{5}{2 x^{-2}}= \\
& \frac{5}{2^{-3} x^{-2}}= \\
& \frac{x^{2}}{y^{-3}}= \\
& \frac{x^{-2}}{y^{-3}}= \\
& \frac{4}{2 x^{-2}}= \\
& \frac{2}{4 x^{-2}}=
\end{aligned}
$$

Write with negative exponents

$$
x^{3}=\quad \frac{1}{x^{-3}}=\quad \frac{1}{2 x^{3}}=\quad \frac{12}{6 x^{3}}=
$$

M10-4.5- Fraction Exponents HW

Change from radical/root form to exponential form.

Change from exponential form to radical/root form. Simplify if possible.
$-3^{\frac{2}{3}}=$
$16^{\frac{3}{4}}=$
$(-5)^{\frac{2}{3}}=$
$9^{\left(\frac{5}{2}\right)}=$

$$
\begin{aligned}
& 81^{\frac{5}{4}}= \\
& (-125)^{\left(\frac{5}{3}\right)}=
\end{aligned}
$$

$(-5)^{\frac{3}{2}}=$
Simplify by exponents laws. Answer in root form.
$3^{\frac{1}{3}} \times 3^{\frac{1}{2}}=$
$5^{\frac{1}{2}} \times 5^{\frac{1}{4}}=$ $7^{\frac{3}{8}} \times 7^{\frac{3}{4}}=$
$6^{\frac{3}{2}} \div 6^{\frac{1}{4}}=$
$\frac{2^{\frac{1}{4}}}{2^{-\frac{1}{2}}}=$
$\frac{5^{\frac{5}{2}}}{5^{4}}=$
$\left(5^{\frac{2}{3}}\right)^{\frac{1}{4}}=$
$\left(7^{\frac{1}{2}}\right)^{3}=$
$\left(5^{0.5}\right)^{\frac{1}{3}}=$

M10-5.1 - Monomial Variable Greatest Common Factor HW

Determine the Greatest Common Factor of the Following

$21 a b, 9 a$
$14 y, 21 x y$
$8 x y, 12 x y$
$9 a^{3}, 15 a^{2}$
$22 x^{2} y^{2}, 6 y^{3}$
$a^{2} b^{3}, 3 a b^{4}$
$6 y^{3}, 22 x^{2} y^{2}$
$6 a^{2}, 22 a, 8$
$4 b^{2}, 44 b, 11$
$9 x^{2}, 21 x, 33$
$3 a^{3}, 2 a^{2}, 5 a$
$15 s^{3}, 25 s^{2}, 45$
$21 t s^{2}, 14 t s, 49 t$
$2 a^{2} b^{3}, 3 a b^{4}, 6 a^{2} b^{5} \quad 15 x y^{2}, 27 x^{2} y^{2}, 12 y^{2} x^{3}$

M10-5.1-Remove Greatest Common Factors HW

Factor the following

M10-5.2 - Identifying " a ", " b " and " c " in Polynomials HW

General form: $a x^{2}+b x+c$

M10-5.2 - Factoring $x^{2}+b x+c " a=1 "$ HW

Factor the following
$x^{2}+5 x+6$

Check by foil:
$x^{2}+6 x+8$ \qquad X \qquad =

$x^{2}+3 x-4 \quad+\quad x+$

$$
x^{2}+4 x+3
$$

$x^{2}-3 x-18$

$x^{2}-11 x+24$

$x^{2}+x-30$
$x^{2}-13 x-30$ \qquad $x^{2}-13 x+30$ \qquad

M10-5.2-Factoring $x^{2}+b x+c " a=1 " H W$

Factor the following

$x^{2}+15 x+54 \quad$| x |
| :--- |
| $=$ |
| |
| $=$ |\quad Check by foil:

$$
\begin{aligned}
& x^{2}-13 x+36 \\
& x^{2}+12 x+27 \\
& x^{2}+10 x+24
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-11 x+28
\end{aligned}
$$

$x^{2}-10 x+21$
$x^{2}-16 x+12$ \qquad x

+ \qquad $=$

M10-5.3 - Factoring $a x^{2}+b x+c " a \neq 1 " H W$

Factor the following

Check by foil:
$2 x^{2}-3 x-2$

$6 x^{2}+19 x+3 \quad x=$
$5 x^{2}+12 x+1$

$3 x^{2}+13 x+4$

$2 x^{2}+3 x-9$

$$
3 x^{2}-5 x-2
$$

$6 x^{2}+17 x+10$ \qquad $5 x^{2}+13 x+9$

M10-5.3 - Factoring $a x^{2}+b x+c " a \neq 1 " H W$

Factor the following
$2 x^{2}+5 x+3$ \qquad X \qquad $=$
$2 x^{2}+x-1$ \qquad $=$
\qquad
\qquad
\qquad
$3 x^{2}-8 x+4$ \qquad $X \quad=$
$=\quad 2 x^{2}-9 x+10$
$-X$ \qquad $=$
\qquad
\qquad
\qquad
$3 x^{2}-11 x+6$
$\xrightarrow{ } x$ \qquad $=\quad 2 x^{2}-13 x+15$ \qquad
x \qquad $=$
\qquad
\qquad

$+$ \qquad $=$
$5 x^{2}-17 x-12$ \qquad X
$4 x^{2}-8 x+5$ \qquad
X $=$
\qquad
\qquad

M10-5.3 - Factoring $a x^{2}+b x+c " a \neq 1 "$ HW

Factor the following

$2 x^{2}-x-6$
X $=$
$2 x^{2}+9 x+9$
$\longrightarrow X$ \qquad $=$
$4 x^{2}+16 x+15$ \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad $6 x^{2}+16 x+8$ $=$
$2 x^{2}+7 x+6$ \qquad
\qquad $3 x^{2}+7 x+4$
X \qquad $=$
$3 x^{2}+4 x+1$ \square
\qquad $=$
$2 x^{2}+3 x+4$ \qquad X \qquad $=$
\qquad $=$ \qquad $+$ \qquad

M10-5.3-Perfect Squares HW

Factor the following.

M10-5.4-Differences of Squares HW

Factor

$$
x^{2}-64
$$

$$
x^{2}-144
$$

$$
x^{2}-121
$$

$$
x^{2}-4
$$

$$
1-x^{2}
$$

$$
9-x^{2}
$$

$$
4-9 x^{2}
$$

$$
-x^{2}+49
$$

$$
a^{2}-b^{2}
$$

$$
4 x^{2}-9
$$

$$
4 x^{2}-16
$$

$$
4 x^{2}-25
$$

$$
9 x^{2}-1
$$

$$
9 x^{2}-49
$$

$$
16 x^{2}-25
$$

$$
49-81 x^{2}
$$

$-25+121 x^{2}$
$81 x^{2}-4$

$$
\begin{aligned}
& x^{2}-1 \\
& x^{2}-25 \quad x^{2}-16 \\
& \left.\left(__{-}^{+}+Z_{-}\right)(]_{-}^{-}\right) \\
& x^{2}-49 \\
& x^{2}-36 \\
& x^{2}-81
\end{aligned}
$$

M10-5.4-Differences of Squares HW

Factor
$4 x^{2}-9 y^{2}$
$16 x^{2}-25 y^{2}$
$49 y^{2}-25 x^{2}$
$16 x^{2}-225 y^{2}$
$64 x^{2}-169$
$4 x^{2}-8 y^{2}$
$x^{4}-9$
$x^{6}-144$

$$
x^{4}-81
$$

M10-5.5-Factoring out GCF, Then Factoring HW

Factor
$3 x^{2}+15 x+18$
$3\left(x^{2}+5 x+6\right)$
$3(x+2)(x+3)$
$2 x^{3}-4 x^{2}-30 x$
$-x^{2}-5 x+14$
$-x^{4}+11 x^{3}-24 x^{2}$
$2 x^{2} y-20 x y+42 y$
$4 x^{2} a-4 x a-48 a$
$4 x^{2}+6 x+2$
$-4 x^{2}-10 x-6$
$\frac{x^{2}}{2}+x+\frac{1}{2}$
$x^{2}+6 x+9$
$x^{2}-8 x+16$
$x^{2}+10 x+25$
$(x+3)(x+3)$
$(x+3)^{2}$
$2 x^{2}+24 x+72$
$3 x^{2}+12 x+12$
$4 x^{2}-8 x+4$

M10-5.6-Substitute to Factor, Combined Perfect Squares HW

Substitute the brackets for a variable, factor, the substitute the brackets back to solve.
$4(h-2)^{2}-8(h-2)+3$
$2(y+3)^{2}+3(y+3)-9$
$(x+1)^{2}-(x+1)-12$
$(x-4)^{2}+8(x-4)+15$
$(2+y)^{2}+8(2+y)+15$
$3(6-k)^{2}-8(6-k)+4$
$(x+1)^{8}-9 x^{2}$

$$
(x+2)^{2}-(x-3)^{2}
$$

Factor and simplify as much as possible.
$x^{4}-81$
$x^{8}-16$

M10-5.7-Fractions/Decimals Factoring HW

Factor
$x^{2}+\frac{16}{15} x-1$
$\frac{1}{6} x^{2}-2 x-18$
$\frac{1}{25} a^{2}-\frac{1}{36}$
$\frac{1}{8} x^{2}+\frac{3}{16} x-\frac{1}{8}$
$x^{2}+\frac{1}{3} x-\frac{2}{3}$
$\frac{1}{16} t^{2}+\frac{1}{2} t+1$
$0.02 x^{2}-0.23 x+0.3$
$t^{2}+0.2 t-0.15$
$0.02 x^{2}+0.05 x-0.03$
$1.5 s^{2}-0.1 s-0.6$
$0.25 x^{2}-1$

M10-5.8 - Finding k to Factor HW

Find k that allows the polynomial to be factored

$$
\begin{array}{l|l|l|l}
x^{2}+k x-10 & x^{2}+k x+20 & 3 x^{2}+k x-10
\end{array}
$$

$$
x^{2}+8 x-k
$$

$$
x^{2}-3 x-k
$$

$$
23 x^{2}+45 x-k
$$

$$
15 x^{2}+k x+2
$$

$12 x^{2}+4 x-k$
$k x^{2}+6 x-2$
$k x^{2}+12 x+6$
$k x^{2}+7 k x+20$
$x^{2}-k$

M10-6.1-Linear? HW
Are the following Lines Linear?

M10-6.2-Pos, Neg, Zero, Undef Slope HW

Is the slope positive, negative, zero or undefined?

Slope $=$
Slope $=$

M10-6.3-Graph: Find Slope HW

Find the Slope of the following lines.

M10-6.3-Graphing Slope HW

Graph the following, given a point and the slope.
$(0,0), m=\frac{1}{2}$

$(0,2), m=0$

$(-2,1), m=-\frac{3}{2}$

$(1,1), m=2$

$(-2,1), m=-1$

$(-1,-1), m=$ undefined

M10-6.3-Points: Find Slope HW

Find Slope

$(2,4)$
$(1,1)$
$(2,1) \quad(4,2)$
$(1,2)$
$(2,3)$
$(2,-1)$
$(4,1)$
$(-4,2) \quad(2,-1)$
$(-1,-2)(-2,-3)$
$(3,-5) \quad(6,4)$
$(-3,0) \quad(5,0)$
$(9,-2) \quad(-2,5)$
$(0,3)$
$(-8,3) \quad(-5,-1)$
$(1,-4) \quad(5,-1)$

M10-6.3-Points Algebra: Find n given Slope HW

Find n
$(2,4) \quad(1, n) \quad m=3$
$(2,1) \quad(n, 2) \quad m=\frac{1}{2}$
$(n, 2) \quad(2,3) \quad m=1$
$(2, n) \quad(4,1) \quad m=2$
$(-4, n) \quad(2,-1) \quad m=-2$
$(-1,-2) \quad(-2, n) \quad m=1$

M10-6.5-Words Find Domain and Range HW

Find the Domain and Range of the following Graphs of the following lines in Words.

M10-6.5-Interval Find Domain and Range HW

Find the Domain and Range of the following Graphs of the following lines in interval Notation.

M10-6.5-Set Find Domain and Range HW
Find the Domain and Range of the following Graphs of the following lines in Set Notation.

M10-6.5-List Find Domain and Range HW

Find the Domain and Range of the following Graphs of the following as a List.

M10-6.6-Function or Relation HW

Is the following a function or a relation?

$(1,2),(2,3),(3,4),(4,5)$
$(2,2),(2,3),(3,4),(4,5)$

x	y
2	2
2	3
3	4
4	5

x	y
1	2
2	3
3	4
4	5

M10-7.1-Find $x \& y$-Intercept HW

Find and label the $\mathbf{x} \& \mathrm{y}$-intercept and Slope of the following lines.

Find and label Intercepts, state multiple Points, Slope, and Equation of the following graphs.

M10-7.1-Graphing Standard Form HW

Graph the line using the x and y intercept method

$6 x+3 y=12$

\boldsymbol{x}	\boldsymbol{y}
0	
	0

$3 x+2 y=6$

$4 x+2 y=8$

M10-7.1-Graphing Standard Form HW

Graph the line using the \mathbf{x} and \mathbf{y} intercept method

$x-2 y+2=4$
$x-2=0$

$$
y=0
$$

M10-7.2-y - int/Slope: Slope Intercept Form HW

Write in $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$.

Slope $=-2, y-$ intercept $=3$

Slope $=\frac{3}{2}, y-$ intercept $=2$

Slope $=1, y-$ intercept $=0$

Slope $=0, y-$ intercept $=0$

Slope $=-\frac{1}{2}, y-$ intercept $=5$

Slope $=3, y-$ intercept $=-2$

Slope $=2, y-$ intercept $=0$

Slope $=1, y-$ intercept $=0$

Slope $=$ undefined, $x-$ intercept $=3$

Slope $=\frac{3}{2}, y-$ intercept $=-3$

Slope $=-0.2, y-$ intercept $=-2$
Slope $=4, y-$ intercept $=-1$

Slope $=-0.5, y-$ intercept $=-4$

Slope $=-1, y-$ intercept $=\frac{1}{2}$

$$
0
$$

Slope $=-2, y-$ intercept $=\frac{3}{2}$

Slope $=$ undefined,$x-$ intercept $=0$

M10-7.2 - Find Slope and y-Intercept HW

Identify slope and y-intercept.
$y=2 x+1$
$y=-3 x-4$
$y=x$
$y=4$
$y=-\frac{1}{3} x+4$
$x=3$
$y=2 x+3$
$y=\frac{3}{2} x-2$
$y=5$
$x=0$

$$
y=\frac{1}{2} x
$$

$$
y=0
$$

$$
y=-2 x+7
$$

$y=3 x$
$y=0.2 x+1$

M10-7.2-Graph Slope Intercept HW

Graph the Following

$$
y=x+1
$$

$$
y=-x-2
$$

$$
y=2 x+1
$$

$$
y=3 x
$$

$$
y=\frac{1}{2} x-3
$$

$$
y=-2 x+4
$$

$$
y=-\frac{3}{2} x+2
$$

$$
y=3 x+5
$$

$$
y=3 x-4
$$

$$
y=5
$$

$$
x=2
$$

$$
y=-\frac{1}{5} x-2
$$

M10-7.2 - Find Equation Slope Intercept Form HW
Find the equations in Slope Intercept Form of the following lines.

M10-7.3 - Identify Slope/Point Slope Point Form HW

Identify the slope and the point of the following equation.

$$
y-1=2(x-2)
$$

$y+3=\frac{1}{3}(x-2)$
$y-2=2(x+1)$
$y-2=(x-1)$

$$
y+3=2(x-1)
$$

$$
y+5=\frac{1}{2}(x+1)
$$

$$
y-3=-\frac{2}{3}(x+1)
$$

$$
y+4=-(x+2)
$$

$$
y=2(x-1)
$$

$$
y+2=(x)
$$

$$
y+2=-\frac{1}{2}(x+1)
$$

$$
y=(x)
$$

M10-7.3- Point/Slope: Find Eq. Slope Point Form HW $\quad y-y_{1}=m\left(x-x_{1}\right)$ Write in slope-point form.
$(1,2), \quad m=2$
$(2,-3), \quad m=4$
$(-2,3), \quad m=2$
$(-3,-2), \quad m=\frac{1}{2}$
$(1,5), \quad m=-\frac{2}{3}$
$(-2,-3), \quad m=-2$
$(-2,-4), \quad m=-5$
$(2,-3), \quad m=-1$
$(-1,-3), \quad m=\frac{1}{2}$
$(0,5), \quad m=-2$
$(6,-2), \quad m=-\frac{4}{3}$
$(-1,-5), \quad m=1$
$(-3,-1), \quad m=-\frac{5}{4}$
$(1,0), \quad m=-\frac{2}{3}$
$(-1,-2), \quad m=-6$

M10-7.3-Graph Slope Point HW

Graph the Following

$$
y-1=2(x-2)
$$

$$
y+3=\frac{1}{3}(x-2)
$$

$$
y-2=2(x+1)
$$

$$
y-2=(x-1)
$$

$$
y+3=2(x-1)
$$

$$
y+5=\frac{1}{2}(x+1)
$$

$y-3=-\frac{2}{3}(x+1)$
$y+4=-(x+2)$
$y=2(x-1)$

$$
y+2=(x)
$$

$$
y+2=-\frac{1}{2}(x+1)
$$

$$
y=(x)
$$

M10-7.3-Graph: Find Equation Slope Point Form HW

Find the equations in Slope Point Form of the following lines

M10-7.4-Point/Slope: Slope Intercept Form HW

Write in $y=m x+b$
$(1,3), \quad m=2$
$(-2,3), \quad m=2$
$(-2,-3), \quad m=-2$
$(-3,-2), \quad m=\frac{1}{2}$
$(2,-3), \quad m=0$
$(1,5), \quad m=u n d$
$(1,2), \quad m=-6$
$(0,5), \quad m=-2$
$(2,-3), \quad m=-1$
$(6,-2), \quad m=-\frac{4}{3}$
$(-1,-3), \quad m=\frac{1}{2}$
$(-1,-5), \quad m=1$

M10-7.4 - Slope Point Form - Slope Intercept Form HW

Write in Slope Intercept Form

$$
\begin{array}{rlr}
y-1 & =3(x-4) & y-4=2(x-1) \\
y-1 & =3 x-12 & \\
+1 & +1 \\
y & =3 x-11 &
\end{array}
$$

$$
y+5=3(x-4)
$$

$$
y+3=1(x-2)
$$

$$
y+6=4(x-4)
$$

$$
y-9=7(x+5)
$$

$$
y-7=5(x+1)
$$

$$
y-3=1(x+4)
$$

$$
y+5=3(x+5)
$$

$$
y+4=\frac{2}{3}(x+3)
$$

$$
y+8=6(x+5)
$$

$$
y-4=-2(x-1)
$$

$$
y-3=-1(x-2)
$$

$$
y+7=-\frac{5}{2}(x-3)
$$

$$
y+10=-\frac{8}{3}(x+5)
$$

$$
y-10=-8(x+1)
$$

$$
-y-5=\frac{3}{2}(x-1)
$$

M10-7.4-Slope Intercept Form - General Form HW

Write in General Form

$$
y=1 x+4
$$

$$
y=5 x+9
$$

$$
y=6 x+8
$$

$$
y=1 x-8
$$

$$
y=8 x-2
$$

$$
y=7 x-3
$$

$$
y=\frac{1}{2} x-5
$$

$$
y=\frac{4}{3} x+5
$$

$$
y=-\frac{2}{3} x+5
$$

$$
\frac{y}{2}=-\frac{2}{3} x-2
$$

$$
y=8 x
$$

$$
y=9
$$

M10-7.4 - Slope Point Form - General Form HW

Write in General Form

$y-4=3(x-1)$
$y-4=2(x-5)$
$y-8=6(x-3)$
$y-4=3 x-3$
$+4+4$
$y=3 x+1$
$-y \quad-y$ $0=3 x-y-1$

$$
y-7=5(x+2)
$$

$$
y-2=\frac{1}{2}(x+5)
$$

$$
y+6=4(x-5)
$$

$y+3=1(x-2)$

$$
y+4=\frac{2}{3}(x+4)
$$

$$
y+4=2(x+5)
$$

$y-9=-\frac{7}{3}(x-2)$

$$
y-4=-2(x+4)
$$

$$
y+9=-3(x-1)
$$

M10-7.4-General Form - Slope Intercept Form HW

Write in Slope Intercept Form

$$
\begin{aligned}
3 x+1 y+3 & =0 \\
3 x+y+3 & =0 \\
-3 x & -3 x \\
y+3 & =-3 x \\
-3 & -3 \\
y & =-3 x-3
\end{aligned}
$$

$$
8 x+8 y-8=0
$$

$$
2 x+\frac{1}{2} y-4=0
$$

$$
16 x+4 y-4=0
$$

$-32 x+8 y+16=0$
$-8 x+\frac{4}{3} y-12=0$
$-\frac{3}{2} x-3 y+12=0$

$$
\frac{1}{2} x-\frac{2}{3} y+9=0
$$

$$
-\frac{2}{3} x+\frac{1}{6} y-2=0
$$

$$
-1 x-1 y-3=0
$$

M10-7.5-Parallel and Perpendicular Slope HW

Find the parallel and perpendicular slope to the following slopes.

$$
m=2
$$

$m=-3$
$m=\frac{-1}{2}$

Parallel: $m=2$
Perpendicular: $m=-\frac{1}{2}$

$$
m=\frac{2}{3}
$$

$$
m=0
$$

$$
m=\text { undefined }
$$

Find the slope of the line, and the slope of the line parallel and perpendicular to it.

$$
y=\frac{3}{4} x+7
$$

$$
2 x+3 y=5
$$

$$
y-2=3(x-4)
$$

$$
y=5
$$

$$
x+2=0
$$

$$
y+1=-\frac{1}{2}(x+2)
$$

A line passes through $(1,7)$ and $(-3,-1)$. What is the slope of a line parallel and perpendicular to this line.

M10-7.5-Parallel/Perpendicular Lines HW

Find the value of " \boldsymbol{p} " if the lines are parallel, and if the lines are perpendicular.

$$
m=\frac{p}{5}, m=2
$$

$$
m=\frac{8}{p}, m=\frac{-1}{2}
$$

Are the following parallel, perpendicular, or neither?

$$
\begin{array}{lll}
y=-2 x+1 & y=3 x+5 & y=x+9 \\
y=2 x+4 & y=\frac{-1}{3} x-2 & y=x+2
\end{array}
$$

Find the equation parallel to the following line, passing through the following point.

$$
y=2 x+1,(3,5)
$$

Find the equation perpendicular to the following line, passing through the following point.

$$
y=3 x+2,(6,-3)
$$

M10-8.1-Number of Solutions Systems HW

How many solutions do the following graphs have.

Find the number of solutions of the following equations without Graphing.
$y=2 x-3$
$y=x+4$
$y=3 x-8$
$y=3 x+2$
$y=x+1$
$y=x+1$
$2 x-y-3=0$
$x-y+4=0$

$$
\begin{aligned}
& 6 x-2 y=16 \\
& 6 x-2 y+4=0
\end{aligned}
$$

$$
6 x+2 y-6=0
$$

$$
y=-3 x+3
$$

In words, describe the graphs of two lines with the following outcomes.

Infinite number of solutions

No solution

One solution

M10-8.1-Graph: Find Intersection HW

Write the intersection point of the following graphs.

M10-8.1-Solving Graphically HW

Solve for the intersection point by drawing the graphs.

$y=3 x \quad y=x$

$y=\frac{1}{2} x+1 \quad y=x-1$

M10-8.2 - Point On Line HW

Is $(2,3)$ a point on the line?

$$
y=x+1
$$

$$
y=-2 x+4
$$

Is $(-2,1)$ the intersection of the following pairs of lines?

$$
y=x+3 \quad y=-3 x-5
$$

Is $(3,-2)$ the intersection of the following pairs of lines?

$$
y=x-5 \quad y=2 x-6
$$

Is $(5,-1)$ the intersection of the following pairs of lines?

$$
y=\frac{1}{2} x+1 \quad y=-3 x+2
$$

M10-9.1-Substitution HW

Solve by Substitution

$$
y=x+2 \quad y=2 x
$$

$$
y=-x+2 \quad y=3 x-2
$$

$$
y=-2 x+3 \quad y=x-3
$$

M10-9.1-Substitution HW

Solve by Substitution

$$
y=x+2 \quad x+y=4
$$

$x=y-1$
$y-2 x=4$

$y=2 x+1$
$x-y=-2$

M10-9.2-Isolate Substitution HW

Solve by Substitution

$$
\begin{array}{ll}
x+y=2 & y-x=4 \\
x+y=3 & 2 y+10= \\
2 x+y
\end{array}
$$

$4 x+2 y=6$
$-8 x=4 y-12$

M10-9.3-Elimination HW

Solve by Elimination

$$
y+4 x=0 \quad y-x=5
$$

$2 y=2 x+4$
$y=-2 x+5$

$-x-y=4$
$-x+y=-4$

M10-9.4-Line Up Elimination HW

Solve by Elimination
$-2 x+2 y=6$
$y=-2 x+6$

$3 y+2 x=-12$
$3 y+3=x$

$-2 x+5=y$
$-2 y=-2 x-4$

M10-9.5-Multiply Elimination HW

Solve by Elimination

$y=-3 x+3$

$$
2 y=x-8
$$

$3 y=-2 x-12$
$9 y=3 x-9$

$2 y=3 x+4$
$3 y=-4 x+6$

M10-9.5-Frac Elimination HW

Solve by Elimination
$y=3 x-2$
$\frac{y}{2}=\frac{3 x}{2}-1$
$y=-\frac{2}{3} x-4$
$y=\frac{1}{3} x-1$
$\frac{y}{2}=\frac{1}{3} x+1$
$y=x+1$

M10-9.5-Sub/Elim Rev HW

Solve by Substitution

$$
\begin{aligned}
& y=x+2 \\
& y=2 x
\end{aligned}
$$

$$
\begin{aligned}
& y=x+2 \\
& x+y=4
\end{aligned}
$$

$$
\begin{gathered}
x=y-1 \\
y-2 x=4
\end{gathered}
$$

$$
x+y=2
$$

$$
y-x=4
$$

$$
\begin{gathered}
2 x+y=3 \\
2 y+10=4 x
\end{gathered}
$$

Solve by Elimination

$$
\begin{array}{r}
y+4 x=0 \\
y-x=5
\end{array}
$$

$$
\begin{aligned}
& 2 y=2 x+4 \\
& y=-2 x+5
\end{aligned}
$$

$$
\begin{gathered}
-2 x+2 y=6 \\
y=-2 x+6
\end{gathered}
$$

$$
\begin{aligned}
& 3 y+2 x=-12 \\
& 3 y+3=x
\end{aligned}
$$

$$
\begin{aligned}
y & =-3 x+3 \\
2 y & =x-8
\end{aligned}
$$

$$
\begin{aligned}
& 3 y=-2 x-12 \\
& 9 y=3 x-9
\end{aligned}
$$

$$
\begin{array}{ll}
y=3 x-2 & y=-\frac{2}{3} x-4 \\
\frac{y}{2}=\frac{3 x}{2}-1 & y=\frac{1}{3} x-1
\end{array}
$$

$$
y=2 x+1
$$

$$
x-y=-2
$$

$$
4 x+2 y=6
$$

$$
-8 x=-4 y-10
$$

$$
\begin{aligned}
& -x-y=4 \\
& -x+y=-4
\end{aligned}
$$

$$
\begin{gathered}
-2 x+4=y \\
-2 y=-2 x-4
\end{gathered}
$$

$$
\begin{aligned}
& 2 y=3 x+4 \\
& 3 y=-4 x+6
\end{aligned}
$$

$$
\begin{aligned}
& y=-2 x+3 \\
& y=x-3
\end{aligned}
$$

$$
\begin{aligned}
& \frac{y}{2}=\frac{1}{3} x+1 \\
& y=x+1
\end{aligned}
$$

M10-9.6- Let Statements Systems of Equations Notes

Write Let Statements and an Expression or Equation in either form.
$a x+b y=c$
$y=m x+b$

A person has some Loonies.

A person has 24 Total coins in Dimes and Quarters.

A person has some Nickels and Dimes.

A person has 16 Total coins in Nickels and Pennies.

A person has some Nickels. How much do they have in Nickels?

A person has Quarters and Dimes. How much money do they have?

A person has Dimes and Quarters worth $\$ 4.50$.

A person has loonies and toonies worth seven dollars.

A person deposits two dollars per day into a bank account with $\$ 100$ in the account to start.

The Cost of a truck is $\$ 250$ per month plus \$0.2 per kilometer.

An Bird swops down at 5 meters per second from a height of 2000 meters.

M10-9.6-Coin Solve Systems of Equations Notes

A person has 16 total coins of Dimes and Loonies worth $\$ 8.80$, How many Dimes and Loonies do they have?

A person has 22 total coins of Quarters and Dimes worth $\$ 5.20$, How many Quarters and Dimes do they have?

A person spends $\$ 17.40$ on 12 kg of bulk Candy at $\$ 1.20 / \mathrm{kg}$ and $\$ 1.80 / \mathrm{kg}$? How much did they spend on each?

M10-9.6-Investment/Weights WS

Mark invests a total of $\$ 2800$ in a 12% bond and an 8% bond earning $\$ 288$. How much did he invest in each?

Marie invests a total of $\$ 3400$ in a 9% bond and an 11% bond earning $\$ 366$. How much did she invest in each?

M10-9.6 - Wind and Current WS

A boat took 3 hrs to travel 24 km with a current and 5 hrs to return. What is the speed of the boat in still water?

A plane travels 780 km in 4 hours with a headwind. It takes 3 hours to return with a tailwind. What is the wind speed?

M10-9.6-y=mx+b Equations

Joe has 2 dollars in the bank and deposits 3 dollars per day. Mary has 12 dollars in the bank and spends 2 dollars per day. Find the intersection and state its meaning.

One cell phone company charges $\$ 40$ per month and five dollars a gigabyte of data. Another cell phone company charges $\$ 20$ per month and $\$ 10$ a gigabyte of data. Find the intersection and students meaning.

Joe has 1 dollars in the bank and deposits 2 dollars per day. Mary has 4 dollars in the bank and spends 1 dollars per day. Find the intersection and state its meaning.

One car company sells a car for $\$ 50,000$ and depreciate at five dollars per year. Another car company sells cars for $\$ 80,000$ and depreciate that $\$ 10,000$ per year. Find the intersection and stayed its meaning.

The End

