Math 10 Notes

Nicholas Cragg Knack Publishing www.knackacademics.com nick@knackacademics.com 604.505.2867

M10-1.1-SI/Imperial Conversion Factors vs Equal Fractions Notes

How many centimeters around a 400m track?

$100 \mathrm{~cm} \times 400=40000 \mathrm{~cm}$

There are 40000 cm around a 400 m track.

How many centimeters around a 400m track?

Notice: choose a conversion factor that allows you to cross off the units you're given to get the units you want.

How many inches in 1m?
$1 \not 2 \times \frac{100 \mathrm{~cm}}{1 m \pi}=100 \mathrm{~cm} \quad \mathrm{OR}$
$1 m \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=\frac{100 \mathrm{in}}{2.54}=$
$100 \mathrm{~cm} \times \frac{1 \mathrm{in}}{2.54 \mathrm{ch}}=39.37 \mathrm{in}$

Notice: sometimes we need to use two conversion factors to get from what we are given to get the units we want or all in one step.

How many meters squared (m^{2}) in $\mathbf{2}$ kilometers squared $\left(\mathrm{km}^{2}\right)$?
OR
$2 \mathrm{~km}^{2} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=2000000 \mathrm{~m}^{2} \quad 2 \mathrm{~km}^{2} \times\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)^{2}=2000000 \mathrm{~m}^{2}$
$k m^{2}=k \pi \times \pi \times \frac{m}{k m} \times \frac{m}{\mathrm{~km}}=m^{2} \quad \begin{aligned} & \text { Notice: in order to cross off } \mathrm{km}^{2} \text { we must } \\ & \text { multiply by the conversion factor } 2 \text { times. }\end{aligned}$

How many centimeters cubed (cm^{3}) in 1 meter cubed (m^{3})
$1 m^{2} \times \frac{100 \mathrm{~cm}}{1 m \mathrm{~m}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}^{\prime}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}^{\prime}}=10000 \mathrm{~cm}^{3} \quad \mathbf{O}$
Notice: in order to cross off m^{3} we must multiply by the conversion factor 3 times.

$$
1 \mathrm{~m}^{3} \times\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3}=10000 \mathrm{~cm}^{3}
$$

M10-1.2-Conversion 1st vs 2nd Notes

Find the Area in cm^{2}

How many litres of water can fit in this cube?

$1000 \mathrm{~m}^{3} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=1000000000 \mathrm{~cm}^{3}$
$1000000000 \mathrm{~cm}^{3} \times \frac{1 \mathrm{~mL}}{\mathrm{~cm}^{3}}=10000000000 \mathrm{~mL}$
$1000000000 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=1000000 \mathrm{~L}$

1000 cm
$10 \mathrm{~m} \times \frac{100 \mathrm{~cm}}{\mathrm{~m}}=1000 \mathrm{~cm}$
$V=l \times w \times h$
$V=1000 \mathrm{~cm} \times 1000 \mathrm{~cm} \times 1000 \mathrm{~cm}$
$V=1000000000 \mathrm{~cm}^{3}$

M10-1.3-Scientific Notation Conversion Factors Notes

Conversion Factors

Prefixes

How many Litres are in 50 Millilitres?

OR
$50 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.05 \mathrm{~L}=5 \times 10^{-2} \mathrm{~L} \quad 50 \mathrm{~mL} \times \frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}=0.05 \mathrm{~L}=5 \times 10^{-2} \mathrm{~L}$
Attach Prefix Exponent to the Base Unit!

How many Micrometers in 4 Meters?
$4 m \times \frac{1000000 \mu \mathrm{~m}}{1 \mathrm{~m}}=4000000 \mu \mathrm{~m}$
〇R $4 m \times \frac{1 \mu m}{10^{-6} m}=4000000 \mu m$

How many millimeters in $\mathbf{2 4}$ kilometers?

Base Unit 1st

$24 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times 24000 \mathrm{~m}$
$24000 \mathrm{~m} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=2400000 \mathrm{~cm} \quad \mathrm{R}$
$24 \mathrm{~km} \times \frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}=24000 \mathrm{~m}$
$24000 \mathrm{~m} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=2400000 \mathrm{~cm}$
$24000 \mathrm{~m} \times \frac{1 \mathrm{~mm}}{10^{-3} \mathrm{~m}}=24000000 \mathrm{~mm}$
OR

OR

$$
24 \mathrm{~km} \times \frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \mathrm{~mm}}{10^{-3} \mathrm{~m}}=24000000 \mathrm{~mm}
$$

$24 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{10 \mathrm{~mm}}{1 \mathrm{~m}}=24000000 \mathrm{~mm}$
$24000000 \mathrm{~mm}=2.4 \times 10^{7} \mathrm{~mm}$

M10-2.1 - Cone Surface Area/Volume Notes

Cone Surface Area

$S A=\pi r^{2}+\pi r S$
$S A=(3.14)(3)^{2}+(3.14)(3)(5)$
$S A=28.27+47.12$
$S A=75.40 \mathrm{~cm}^{2}$
$S A=24 \pi \mathrm{~cm}^{2}$
Terms of Pie

Cone Volume

$$
V=\pi r^{2} h
$$

Terms of Pie

Sphere Surface Area and Volume

$$
\begin{aligned}
& S A=4 \pi r^{2} \\
& S A=4(3.14)(5)^{2}
\end{aligned}
$$

$S A=314 \mathrm{~km}^{2}$
$S A=100 \pi \mathrm{~km}^{2}$

$$
V=\frac{4}{3}(3.14)(5)^{3}
$$

Terms of Pie

$$
V=\frac{4}{3} \pi r^{3}
$$

M10-2.2-Square Pyramid Notes

Square Based Pyramid Surface Area and Volume

$$
\begin{aligned}
& A=\frac{(6)(5)}{2} \\
& A=15 \mathrm{~cm}^{2}
\end{aligned}
$$

$S A=15+15+15+15+36$

OR

$S A=96 \mathrm{~cm}^{2} \quad V=\frac{1}{3} \times($ area of base $) \times h$
$V=\frac{1}{3} \times(l \times w) \times h$
$V=\frac{1}{3} \times(6 \times 6) \times 4$
$V=48 \mathrm{~cm}^{3}$

M10-2.3-Rectangular Pyramid Notes

Rectangular Based Pyramid Surface Area and Volume

$S A=60+60+49.5+49.5+192$

Pythagoras (Same as Above)
 See page before

$$
\begin{aligned}
V & =\frac{1}{3} \times(\text { area of base }) \times h \\
V & =\frac{1}{3} \times(l \times w) \times h \\
V & =\frac{1}{3} \times 8 \times 24 \times 3 \\
V & =192 \mathrm{~cm}^{3}
\end{aligned}
$$

M10-2.4-Volume/Surface Area Missing Length Notes

Find the missing length for the shapes below.

$$
\begin{aligned}
V & =\frac{1}{3} \times(\text { area of base }) \times h \\
V & =\frac{1}{3} \times(l \times w) \times h \\
500 & =\frac{1}{3} \times 10 \times 10 \times h \\
500 & =\frac{100 h}{3} \\
3 \times 500 & =\frac{100 \mathrm{~h}}{3} \times 3 \\
1500 & =100 \mathrm{~h} \\
\frac{1500}{100} & =\frac{100 \mathrm{~h}}{100} \\
h & =15 \mathrm{~mm}
\end{aligned}
$$

$$
V=157.08 f t^{3}
$$

$$
S A=196 \pi \mathrm{in}^{2} \quad \text { Terms of pie }
$$

$$
\begin{aligned}
S A & =4 \pi r^{2} \\
196 \pi & =4 \pi r^{2} \\
\frac{196 \pi}{\pi} & =\frac{4 \pi r^{2}}{\pi} \\
\frac{196}{4} & =\frac{4 r^{2}}{4} \\
49 & =r^{2} \\
\sqrt{49} & =r \\
r & =7 \mathrm{in}
\end{aligned}
$$

M10-3.1-SOH CAH TOA Trigonometry Intro Notes

Sides
($\theta \& \beta$ are Angles)

Adjacent: The side touching angle θ.

Opposite: The side opposite of angle θ.

Hypotenuse: The Longest Side, Opposite of the 90° Angle.

Sine Ratio

4
Adj
Label Hyp/Opp/Adj

Calculator Degree Mode! (Not Radians)
Mode Degree

SOH CAH TOA

I	O	H	O	A	H	A	O	A
N	P	Y	S	D	Y	N	P	D
E	P	P		J	P		P	J
	O	O		A	O		O	A
	S	T		C	T		S	C
	I	E		E	E		I	E
	T	N		N	N		T	N
	E	U		T	U		E	T
		S			S			
		E			E			

Choose the part of SOH CAH TOA that has 2 pieces of info that we have, and one we want.

M10-3.2-SOH CAH TOA Trigonometry Algebra Notes

Plug into your Calculator, Draw a Triangle, State Meaning.

Solve the Adjacent

Using Tan

$$
\begin{aligned}
\tan \theta & =\frac{O p p}{\operatorname{Adj}} \\
\tan 30 & =\frac{5}{A} \\
A \times \tan 30 & =\frac{5}{A} \times A \\
\operatorname{Atan} 30 & =5 \\
\frac{\operatorname{Atan} 30}{\tan 30} & =\frac{5}{\tan 30} \\
A & =\frac{5}{\tan 30} \\
A & =8.660
\end{aligned}
$$

Multiply 5
Divide $\tan 30$
Both Sides!
OR

Using Cos

$$
\begin{aligned}
& \cos \theta=\frac{A d j}{H y p} \\
& 10 \times \cos 30=\frac{A d j}{10} \times 10 \\
& \operatorname{Adj}=8.660
\end{aligned}
$$

Find Other Angle β
Opp and Adj Switch

$$
\begin{aligned}
& \cos \beta=\frac{A d j}{H y p} \\
& \cos \beta=\frac{5}{10}
\end{aligned}
$$

$$
\beta=\cos ^{-1}\left(\frac{5}{10}\right)
$$

Calculator Buttons

5	\div	\tan	30

M10-4.1 - Entire to Mixed Radicals Notes

Perfect Cubes

$$
\begin{array}{rll}
\begin{aligned}
\sqrt[3]{24} & =\sqrt[3]{8 \times 3} \\
& =\sqrt[3]{8} \times \sqrt[3]{3}
\end{aligned} \quad \begin{aligned}
\frac{24}{8}=3 & \begin{array}{l}
\text { What are Two } \\
\text { Numbers that } \\
\text { Multiply to the }
\end{array} \\
= & \begin{array}{l}
\text { Number Underneath } \\
\text { the Cube Root that }
\end{array} \\
\text { Perfect Cubes } & \begin{array}{l}
\text { you know the Cube }
\end{array} \\
1,8,27,64,125,216 \ldots & \text { Root of One of them. }
\end{aligned}
\end{array}
$$

M10-4.2 - Mixed to Entire/Variables Radicals Notes

Simplify

M10-4.3-Add/Sub/Multiply Exponents Laws Notes

Remember:

-Never multiply the base by the exponent -Must have same base to use laws.

Multiplying with the Same Base, Add Exponents.
$x^{3} \times x^{2}=(x \times x \times x) \times(x \times x)=x^{5}$
$x^{3} \times x^{2}=x^{3+2}=x^{5} \quad$ Add Exponents

Dividing with the Same Base, Subtract Exponents.
$\frac{x^{5}}{x^{2}}=\frac{x \times x \times x \times x \times x}{x \times x}=x^{3}$

$$
\frac{x^{5}}{x^{2}}=x^{5-2}=x^{3} \quad \text { Subtract Exponents }
$$

$$
\begin{aligned}
& \text { Check Answer } \\
& \frac{3^{5}}{3^{2}}=27=3^{3} \quad \begin{array}{l}
\text { Arbitrary } \\
\text { Numbers }
\end{array}
\end{aligned}
$$

Exponents to Exponents, Multiply Exponents
$\left(x^{2}\right)^{3}=(x \times x)^{3}=(x \times x) \times(x \times x) \times(x \times x)=x^{6}$
$\left(x^{2}\right)^{3}=x^{2 \times 3}=2^{6} \quad$ Multiply Exponents

$$
\begin{aligned}
& \text { Check Answer } \\
& \left(5^{2}\right)^{3}=15625=5^{6} \\
& \text { Arbitrary Numbers }
\end{aligned}
$$

Product/Quotients to Exponents, Multiply Exponents

$\left(x^{1} \times y^{1}\right)^{2}=x^{2} y^{2} \quad$| $(2 x)^{3}=(2 x) \times(2 x) \times(2 x)=8 x^{3}$ |
| :--- |
| $(2 x)^{3}=2^{3} x^{3}=8 x^{3}$ |

$\left(\frac{2^{1} x^{1}}{y^{3}}\right)^{2}=\frac{2^{2} x^{2}}{y^{2 \times 3}}=\frac{4 x^{2}}{y^{6}}$| Multiply Exponents |
| :--- |
| $(3+4)^{2} \neq 3^{2}+4^{2}=25$ |
| $(3+4)^{2}=(3+4)(3+4)=7 \times 7=7^{2}=49$ |

$$
\begin{array}{lll}
\left(\frac{6 m n^{3}}{4 m^{2} n}\right)^{3} & R\left(\frac{6 m n^{3}}{4 m^{2} n}\right)^{3} & \\
\left(\frac{3 n^{2}}{2 m}\right)^{3} & \text { Simplify } & \frac{6^{3} m^{3} n^{9}}{4^{3} m^{6} n^{3}}
\end{array} \quad \begin{aligned}
& \text { Multiply } \\
& \frac{3^{3} n^{6}}{2^{3} m^{3}} \\
& \frac{216 n^{6}}{64 m^{3}}
\end{aligned} \quad \text { 1st } 1
$$

M10-4.4 - Negative Exponents Laws Notes

Negative Exponents

$$
\begin{array}{lll|}
x^{-2}=\frac{1}{x^{2}} & \text { Bring to the bottom, make exponent positive } & x^{-a}=\frac{1}{x^{a}} \\
\frac{1}{x^{-2}}=\frac{x^{2}}{1} & \text { Bring to the top, make exponent positive } & \frac{1}{x^{-a}}=x^{a} \\
\hline
\end{array}
$$

$3 a^{-2}=\frac{3}{a^{2}} \quad$ Bring to the bottom, make exponent positive

Notice the 3 doesn't come down
$3^{-3} a^{-2}=\frac{1}{3^{3} a^{2}}$ Bring to the bottom, make exponent positive
$(2 x)^{-3}=\frac{1}{(2 x)^{3}}=\frac{1}{8 x^{3}}$ Bring to the bottom, make exponent positive

$$
\frac{x^{-2}+5}{3} \neq \frac{5}{3 x^{2}}
$$

Step 1

When working with negative exponents:

Start with a fraction "Over" sign.
Put anything not moved!
Move whatever needs to be moved.
If nothing is left on the top, put a 1.

When you can flip it!	$\left.\left(\frac{x}{y}\right)^{-2}=\frac{x^{-2}}{y^{-2}}=\frac{y^{2}}{x^{2}}\right)$
OR	Distribute Exponents Bring to the bottom, make exponent positive Bring to the top, make exponent positive
$\left.\frac{x}{y}\right)^{-2}=\left(\frac{y}{x}\right)^{2}\left(=\frac{y^{2}}{x^{2}}\right.$	Flip it and make the exponent positive

Alternate Subtraction Methods

$\frac{x^{2}}{x^{5}}=x^{2-5}=x^{-3}=\left(\frac{1}{x^{3}}\right)$
Subtract from the top

Theory

$\frac{x^{-2}}{x^{3}}=\frac{1}{x^{3} x^{2}}=\frac{1}{x^{5}}$
$\frac{x^{-2}}{x^{3}}=\frac{1}{x^{3-(-2)}}=\frac{1}{x^{5}}$

Bring Up, Add
OR
Subtract
$\frac{x^{2}}{x^{5}}=\frac{1}{x^{5-2}}=\frac{1}{x^{3}}$
Subtract from Bottom
$\frac{x^{2}}{x^{-3}}=x^{2} x^{3}=x^{5}$
$\frac{x^{2}}{x^{-3}}=x^{2-(-3)}=x^{5}$

Bring Down, Add
OR
Subtract From Bottom

M10-4.5- Fraction Exponents/Radical/Root Form Notes

Change from exponential form to radical/root form. Simplify if necessary.

$5^{\frac{3}{4}}=\sqrt[4]{5^{3}} \quad$| Check on Calculator |
| :---: |
| $5^{\frac{3}{4}}=3.34=\sqrt[4]{5^{3}}$ |$\quad x^{\frac{2}{3}}=\sqrt[3]{x^{2}}$

$8^{\left(\frac{1}{3}\right)}=\sqrt[3]{8^{1}}=2$	8	$\sqrt[3]{8}$
Check on Calculator	4 (2)	$\sqrt{\sqrt[3]{2 \times 2 \times 2}}$
$8^{\frac{1}{3}}=2=\sqrt[3]{8^{1}} \quad$,	(2) 2	$\sqrt[3]{8}=2$

$$
x^{\frac{m}{n}}=\sqrt[n]{x^{m}}
$$

$$
\begin{array}{cl}
\begin{array}{l}
(-27)^{\frac{4}{3}}
\end{array} & \begin{array}{l}
\text { Change to Radical/Root Form } \\
\sqrt[3]{(-27)^{4}}
\end{array} \\
\begin{array}{l}
\text { Cube Root 1st } \\
(-3)^{4}
\end{array} & \text { Square 2nd } \\
81 & \sqrt[3]{-27}=-3 \\
\hline
\end{array}
$$

Check on Calculator

$$
(-27)^{\frac{4}{3}}=81 \checkmark
$$

Simplify by exponents laws. Answer in root form.
$\left(2^{\frac{1}{2}}\right)\left(2^{\frac{1}{4}}\right)=2^{\frac{3}{4}}=\sqrt[4]{2^{3}}=\sqrt[4]{8} \quad \begin{gathered}\text { Add Exponents } \\ \frac{1}{2}+\frac{1}{4}=\frac{3}{4}\end{gathered}$
$(3)^{\frac{3}{2}} \div(3)^{\frac{3}{5}}=(3)^{\frac{9}{10}}=\sqrt[10]{3^{9}}$ Subtract Exponents
$\left(\sqrt[2]{2^{3}}\right)^{\frac{1}{4}}=\quad \frac{3}{2}-\frac{3}{5}=\frac{9}{10}$
$\left(2^{\frac{3}{2}}\right)^{\frac{1}{4}} \quad \frac{3}{2} \times \frac{1}{4}=\frac{3}{8}$

> Check Answer $\left(\sqrt[2]{2^{3}}\right)^{\frac{1}{4}}=1.30=\sqrt[8]{8}$

Check on Calculator

$$
\begin{aligned}
& \left(2^{\frac{1}{2}}\right)\left(2^{\frac{1}{4}}\right)=1.68=\sqrt[4]{8} \\
& (3)^{\frac{3}{2}} \div(3)^{\frac{3}{5}}=2.69=\sqrt[10]{3^{9}} \\
& \left(\sqrt[2]{2^{3}}\right)^{\frac{1}{4}}=1.30=\sqrt[8]{2^{3}}
\end{aligned}
$$

M10-5.1-Factoring GCF Notes

Remove Greatest Common Factor "GCF."

$a b+c b \quad G C F=b$

They both have a b

$$
\begin{gathered}
x(x+2)+4(x+2)= \\
(x+2)(x+4)=
\end{gathered}
$$

$$
G C F=(x+2)
$$

They both have a $(x+2)$
Take out a $(x+2)$

Poetry

$2 x-\frac{1}{2} \quad G C F=2$

$$
2\left(x-\frac{1}{4}\right)
$$

$$
\frac{1}{2} \div \frac{2}{1}=\frac{1}{2} \times \frac{1}{2}=1 / 4
$$

$$
\begin{aligned}
& \left(\frac{1}{2} x+4\right) \\
& G C F=\frac{1}{2} \\
& 4 \div \frac{1}{2}=4 \times \frac{2}{1}=8
\end{aligned}
$$

M10-5.2-Factoring (a=1) Trinomials Notes

Factor by Decomposition
$\mathbf{a}=1$
"a" is the number to the left of the x^{2} term.
" b " is the number to the left of the x term.
" c " is the number by itself.

$$
\left.\begin{array}{llll}
1 x^{2}+2 x-3 & \begin{array}{l}
a=1
\end{array} & \begin{array}{l}
\text { Identifying "a", "b", and "c" in: } \\
\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}
\end{array} \\
\mathbf{a} \neq \mathbf{1} & c=-3
\end{array}\right)
$$

$a-c$ $1 x^{2}+5 x-6$$\quad$ Label a, b \& c

a	b
c	

$$
1 x^{2}+5 x+6
$$

$$
a=1
$$

$$
x^{2}+2 x+3 x+6
$$

$$
\left(x^{2}+2 x\right) \mid(+3 x+6) \text { Group }
$$

Decompose
$(x+2)(x+3)$
What are two numbers that:
Multiply to " c ", the last number

Products
1,6
GCF

Switch

Add together to get " b ", the middle number.

Binomials

$\mathbf{b}=\mathbf{0}$
$2 x^{2}+4$
$\mathbf{c}=\mathbf{0}$
$x^{2}+4 x$

> REARRANGE $6-5 x+x^{2}$ $x^{2}-5 x+6$

Setup
 $=\neq 6$

$$
x(x+2)+3(x+2)
$$

2,3

Add
Step 1 Decompose: What are two numbers that: multiply to get " $a \times c$ " and add to get " b." " b " gets split up into the two numbers above on the right.
Step 2 Group: Place brackets around the first two terms, and the second two terms.
Step 3 GCF: Remove a GCF from Groups.
Step 3 GCF: Remove a GCF from each.

$\begin{array}{l}\text { They both have a }(x+2) \\ \text { Take out a }(x+2)\end{array}$	Poetry

Check by Multiplying out
In your Head
FOIL
The answer should be the same as the original question.

$a=1$

\qquad x \qquad $=\neq 8$

\qquad - \qquad $=/ c-10$
\qquad

Remember the sign of the numbers you choose goes in the bracket along with the number.

M10-5.3-Factor by Decomposition $a x^{2}+b x+c(a \neq 1)$ Notes

Factor by Decomposition

Step 1 Decompose: What are two numbers that: multiply to get " $a \times c$ " and add to get " b." " b " gets split up into the two numbers above on the right.
Step 2 Group: Place brackets around the first two terms, and the second two terms.
Step 3 GCF: Remove a GCF from Groups.
Step 3 GCF: Remove a GCF from each.

M10-5.4-Differences of Squares Notes

Differences of Squares: A Subtraction Sign in Between two Squared Things
$x^{2}-9$
$(+)(-) \quad$ Step 1 Set Up Two Sets of Brackets with a $+($ Plus) and a - (Minus) Sign.
$(x+)(x-) \quad$ Step 2 What squared is x^{2} ? x. That answer goes first in each set of brackets.
$(x+3)(x-3)$ Step 3 What squared is 9 ? 3. That number goes second in each set of brackets.

$x^{4}-1$ $\left(x^{2}-1\right)\left(x^{2}+1\right)$	$x^{4}=x^{2} \times x^{2}$ Factor Twice
$(x+1)(x-1)\left(x^{2}+1\right)$	
$x^{4}-81$ $\left(x^{2}-9\right)\left(x^{2}+9\right)$	$a^{4}-b^{4}$ $\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right)$ $\left(a^{2}+b^{2}\right)(a+b)(a-b)$
$(x+3)(x-3)\left(x^{2}+9\right)$	

$4 x^{2}-36$ $4\left(x^{2}-9\right)$	GCF
$4(x+3)(x-3)$	Factor
$4(x+3)(x-3)$ $4\left(x^{2}-3 x+3 x-9\right)$ $4\left(x^{2}-9\right)$ FOIL $4 x^{2}-36$ \quad	

Figure Out what is being Squared $9 x^{2}-y^{2}$
Change of base $4 x^{2}=(2 x)^{2}$
Do this in your Head
$(3 x)^{2}-y^{2}$
$9 x^{2}=(3 x)^{2}$
Factor

$(2 x+7)(2 x-7) \quad$ FOIL
$4 x^{2}-14 x+14 x-49$

$-x^{2}+49$
$49-x^{2}$

Rearrange
$(7+x)(7-x) \quad$ FOIL
$49-7 x+7 x-x^{2}$

$49-x^{2}$
$-\left(-49+x^{2}\right)$
$\mathrm{GCF}=-1$
$-\left(x^{2}-49\right)$
$-(x-7)(x+7)$ Factor
$(3 x+y)(3 x-y) \quad$ FOIL $9 x^{2}-3 x y+3 x y-y^{2}$
$9 x^{2}-y^{2}$
$-\left(x^{2}+7 x-7 x-49\right) \quad$ FOIL
$-\left(x^{2}-49\right)$
$-x^{2}+49$
$49-x^{2}$

$$
\begin{aligned}
& \left(1-x^{10}\right) \\
& \left(1-x^{5}\right)\left(1+x^{5}\right)
\end{aligned}
$$

M10-5.5-Factoring Combo Trinomials Notes
Factoring Combinations

$2 x^{2}+10 x+12$ $2\left(x^{2}+5 x+6\right)$	$G C F=2$ $a=1$ Factor$\quad O R$
$2(x+2)(x+3)$	FOIL
$2(x+2)(x+3)$ $2\left(x^{2}+3 x+2 x+6\right)$ $2\left(x^{2}+5 x+6\right)$	
$2 x^{2}+10 x+12$	

Decomposition

$2 x^{2}+10 x+12$	GCF $=2$
$(2)\left(x^{2}+5 x+6\right)$	Forget about
$x^{2}+2 x+3 x+6$	the 2
$\left(x^{2}+2 x\right)(+3 x+6)$	Put the 2 down
$\downarrow x(x+2)+3(x+2)$	Below I the
$2(x+2)(x+3)$	Answee

$-x^{2}-5 x-6$
$a=-1$
$G C F=-1$

$$
-\left(x^{2}+5 x+6\right)
$$

$$
-(x+2)(x+3)
$$

$$
-\left(x^{2}+3 x+2 x+6\right)
$$

$$
-\left(x^{2}+5 x+6\right)
$$

$$
-x^{2}-5 x-6
$$

$$
x^{4}+5 x^{2}+6
$$

Factor
FOIL

$$
x^{4}-5 x^{2}-36
$$

$$
\left(x^{2}-9\right)\left(x^{2}+4\right)
$$

Factor Trinomials
Factor Differences of Squares

$$
(x-3)(x+3)\left(x^{2}+4\right)
$$

$-5<-2=\neq 10$
$x^{3}+5 x^{2}+6 x$

$x\left(x^{2}+5 x+6\right) \quad$| GCF $=x$ |
| :--- |
| Factor |

$$
x(x+2)(x+3)
$$

$$
x\left(x^{2}+3 x+2 x+6\right)
$$

$$
x\left(x^{2}+5 x+6\right)
$$

$$
x^{3}+5 x^{2}+6 x
$$

-5 $+$ \qquad $=\varnothing-3$

$$
\begin{aligned}
& \quad \text { Decomposition } \\
& x^{2}-3 x y-10 y^{2} \\
& x^{2}-5 x y+2 x y-10 y^{2} \\
& \left(x^{2}-5 x y\right)+\left(+2 x y-10 y^{2}\right) \\
& x(x-5 y)+2 y(x-5 y) \\
& (x+2 y)(x-5 y)
\end{aligned}
$$

M10-5.6 - Factoring Substitution Let $x=m+1$ Notes

$$
\begin{array}{l|l}
4 x^{2}-(x+2)^{2} \\
(2 x)^{2}-(x+2)^{2} & \begin{array}{l}
\text { let } a=2 x \\
a^{2}-b^{2}
\end{array} \\
\text { let } b=(x+2) \\
\text { Put "a" in for " } 2 x \text { " } \\
\text { Put " } b \text { " in for " } x+2 \text { " }
\end{array}
$$

Factor
Put " $2 x$ " back in for " a " $\mathbf{~}$ Put " $x+2$ " back in for " b " Substitute with Brackets

Distribute
Combine Like Terms

Figure Out what is being Squared Change of base Do this in your Head

$$
4 x^{2}=(2 x)^{2}
$$

$(a+b)(a-b)$
$(2 x+(x+2))(2 x-(x+2))$

FOIL then Factor
$4 x^{2}-(x+2)^{2}$
$4 x^{2}-(x+2)(x+2)$
$4 x^{2}-\left(x^{2}+4 x+4\right)$
$4 x^{2}-x^{2}-4 x-4$
$3 x^{2}-4 x-4$
$(3 x+2)(x-2)$

$$
\begin{array}{lr}
9(x+2)^{2}-16(x-1)^{2} & \begin{array}{l}
\text { Let } a=x+2 \\
\text { Let } b=x-1
\end{array} \\
9 a^{2}-16 b^{2} \\
(3 a+4 b)(3 a-4 b) & \\
(3(x+2)+4(x-1))(3(x+2)-4(x-1)) \\
\begin{array}{l}
(3 x+6+4 x-4)(3 x+6-4 x+4) \\
(7 x+2)(-x+10)
\end{array}
\end{array}
$$

$$
-(7 x+2)(x-10)
$$

$x^{2}-6 x+9-y^{2}$
$\left(x^{2}-6 x+9\right)-y^{2}$
$(x-3)^{2}-y^{2}$
$\cdots(x-3+y)(x-3-y)$

Group First/Last 3 Terms Factor
Differences of Squares
...
$9 x^{4}-9 x^{2}+6 x y-y^{2}$
$9 x^{4}-\left(9 x^{2}-6 x y+y^{2}\right)$
$9 x^{4}-(3 x-1)^{2}$
$\left(3 x^{2}\right)^{2}-(3 x-1)^{2}$
$\left(3 x^{2}+(3 x-1)\right)\left(3 x^{2}-(3 x-1)\right)$
$\left(3 x^{2}+3 x-1\right)\left(3 x^{2}-3 x+1\right)$

M10-6.1-Linear/Continuous Notes

Table of Values (Linear/Non-Linear)

Graph (Linear/Non-Linear)(Continuous/Discrete)

Linear

If the points are in a straight line, the relation is linear

Discrete

If the fraction $\frac{\Delta y}{\Delta x}=\frac{\Delta y}{\Delta x}$, it is Linear.
$\begin{aligned} & \frac{3}{2}=\frac{6}{4} \\ & \frac{3}{2} \text { Linear } \quad \frac{3}{2} \\ &=\frac{3}{2} \text { Linear }\end{aligned}$

Continuous: Points are connected

Non-Linear
Discrete

Information: (Continuous/Discrete)

Continuous
Walking to school
Filling a cup with water

The points can be connected because you are at each point throughout time.

If the points are not/cannot be connected

Discrete

Counting the weight of apples Counting number of Humans

The point not connected because you cannot have half an apple* or half a human.

Linear/Non-Linear

Make a table of values or graph information and see.

Equations (Linear/Non-Linear)

Linear

Non-Linear

If the equation is degree/exponents 0 or 1
$y=3 x+1$
$2 y+3 x-4=0$
$y=x^{2}$
$y^{2}+x^{2}=1$
$y=x^{3}-2 x+4$

M10-6.2-Pos, Neg, Zero, DNE Slope Notes
No y-int
$x=-3$
Vertical
Up to Right $m=$ (Und)efined $\quad m=+$ (Positive)

Infinite x-intercepts
$m=0$ (Zero) $\quad m=+$ (Negative)
Flat - Horizontal

$$
\begin{gathered}
y=-4 \\
\text { No } x-i n t
\end{gathered}
$$

M10-6.3-Slope Formula Notes

Find the Slope

Slope Formula

Slope $=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} L$	$(2,1)$ $(3,4)$ $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$ Slope $=\frac{\text { rise }}{\text { run }}$ $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ $=\frac{(5)-(2)}{(2)-(1)}$ $=\frac{3}{1}$
Horizontal distance	

Slope $=3$

Slope is how much you go up by over how much you go over by.

Vertical distance

1) Start at the point on the Left
2) Count straight up to the next point 3) count straight over to the next point

$$
\begin{aligned}
(-1,-2) & (-3,2) \\
\left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right) \\
\text { Slope }=\frac{\text { rise }}{\text { run }} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{(2)-(-2)}{(-3)-(-1)} \\
& =\frac{2+2}{-3+1} \\
& =\frac{4}{-2} \\
\text { Slope } & =-2
\end{aligned}
$$

M10-6.4-Domain Range Notes
Domain: All possible x values. $\quad \mathcal{X}$

Range: All possible y values. \mathcal{Y}

Left Hand Thumb Points Greater Than
(∞, ∞) Infinity Not Included

Set Notation: Domain: $\{x \mid x<3, x \in \mathbb{R}\}$
Interval Notation $(\infty, 3)$
$2 \leq x<3 \quad$ Smaller \#, Less Than*, Variable, Less Than, Bigger \#
Words: x is Less than 3

-10

M10-6.5-Graph: Domain and Range Notes

Domain:

Number Line:
Set Notation: $\{x \mid-2 \leq x \leq 3, x \in \mathbb{R}\}$
Interval Notation: [-2,3]

Range:

Number Line:
Set Notation: $\{y \mid-6 \leq y \leq-1, y \in \mathbb{R}\}$
Interval Notation: $[-6,-1]$

M10-6.6-Function Vertical Line Test Notes

A Relation is a Function if you only have one y value for every x value.

Is a function

$(0,1),(1,2),(2,3),(3,3),(4,5)$

x	y
1	1
2	2
4	3
5	6

Each x value only has one y value

A Relation is a Function if you run your pencil vertically along the page and only cross the line once.

A Relation is NOT a Function with more than one y value for any x value.

Not a function

$(0,1)(1,2),(1,3)(2,4),(3,5)$

A Relation is a Function if you run your pencil vertically along the page and ever hits the line more than once.

M10-7.1-Standard/General Form Notes

Graph the Line in Standard Form:

$3 x+2 y=6$	$\bigcirc \mathrm{R}$	
	\boldsymbol{x}	y
	0	
Y Intercept:		0
$3 x+2 y=6$	Equation	
$2(0)+2 y=6$	Put Zero in for x	
$2 y=6$	Solve	
$\underline{2 y}=\frac{6}{2}$		
$\frac{2}{2}=\frac{1}{2}$		
	(x, y)	
$y=3$	$(0,3)$	

X Intercept:

$$
\begin{array}{rlrl}
3 x+2 y & =6 & & \text { Equation } \\
3 x+2(0) & =6 & & \text { Put Zero in for } y \\
3 x & =6 & & \text { Solve } \\
\frac{3 x}{3} & =\frac{6}{3} & & \\
x & =2 & (x, y) \\
& (2,0)
\end{array}
$$

x and y intercept method

$3 x+2 y-6=0$	
Subtract 6 on Both	$A x+B y=C$
$A x+B y-C=0$	

Subtract 6 on Both
$A x+B y-C=0$
sides

Converting Forms

Standard to Slope Intercept

$$
A x+B y+C=0 \longrightarrow y=m x+b
$$

$$
3 x+2 y=6
$$

$$
-3 x \quad-3 x
$$

Equation

$$
2 y=-3 x+6
$$

Subtract $3 x$ to Both Sides
Slope $=-\frac{3}{2} \quad y-$ int: $(0,3)$
$\frac{2 y}{2}=-\frac{3 x}{2}+\frac{6}{2}$
Divide Both Sides by 2
$y=-\frac{3}{2} x+3$ Slope Intercept Equation

$$
\begin{gathered}
y=m x+b<y-\text { intercept }:(0, b) \\
\uparrow \\
\text { Slope }=\frac{\text { rise }}{\text { run }}
\end{gathered}
$$

Slope Intercept to Standard

$$
y=m x+b \longrightarrow A x+B y+C=0
$$

Equation
$\left(y=-\frac{3}{2} x+3\right) \times 2 \quad$ Multiply Both Sides by $2\left(L C D^{*}\right)$

$$
2 y=-3 x+6
$$

$+3 x \quad+3 x$
Add $3 x$ to Both Sides

Standard From Equation
Subtract 6 from Both Sides

Standard Form Equation
$A x+B y=C$
$A x+B y-C=0$
$+x$ coefficient $x, y, \# /=0$ Order No Fractions

M10-7.2-Slope Intercept Form ($y=m x+b$) Notes
Graphing Slope Intercept Form. Slope Intercept Method

$y=2 x+1 \leftharpoonup y$-intercept $:(0,1)$ \uparrow
 Slope $=\frac{2}{1}$

Find Equation in Slope Intercept Form

$y-$ int $:(0,-1) \quad$ slope $=m=\frac{2}{3}$

$$
y=m x+b
$$

$y=\frac{2}{3} x-1$

Equation
Substitute b,m

Steps:
Plot y - intercept: $(0,1)$
Use slope: $\frac{2}{1} \longleftarrow$ Rise
Plot new Point: $(1,3)$
Put Point in Other Direction
Draw New Points
Draw line
Arrow Tips

x	y
-1	-1
0	1
1	3
-2	-3

$$
\begin{array}{ll}
y-\text { int }:(0,2) & \text { slope }=m=-\frac{3}{1} \\
y=m x+b & \frac{-3}{1}=\frac{3}{-1}=-\frac{3}{1} \\
y=-\frac{3}{1} x+2
\end{array}
$$

M10-7.3 - Slope Point Form $y-y_{1}=m\left(x-x_{1}\right)$ Notes
Find Equation in Slope Intercept Form

Steps:

$(2,1)$
$\left(x_{1}, y_{1}\right)$
Find Slope \quad slope $=m=\frac{3}{1}$
Equation

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Substitute m

$$
\mathrm{m}_{\text {Point }}^{\mathrm{m}} y-1=\frac{3}{1}(x-2)
$$

Steps:

Find Point
Point $(-1,-2)$
$\left(x_{1}, y_{1}\right)$
Find Slope
Equation

$$
\text { slope }=m=-\frac{1}{2}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Substitute with Brackets

Substitute m

$$
y-(-2)=-\frac{1}{2}(x-(-1))
$$

Point
Simplify

Graph Slope Intercept Form

Steps:
Equation

Write Form	$y-y_{1}=m\left(x-x_{1}\right)$			
Find Point	Point		Notice it's the	
:---	:---			
Graph Point	$(-2,-1)$			
	$\left(x_{1}, y_{1}\right)$		Opposite of what's	
:---				
Inside the Brackets				

Find Slope Graph Slope

$$
y+1=\frac{2}{3}(x+2)
$$

M10-7.4 - Find Equation Slope Int/Slope Pt Form Algebra Notes

Given a point and the slope: $(1,3) \quad m=2$
(x, y)

$$
y-y_{1}=m\left(x-x_{1}\right) \longrightarrow y=m x+b
$$

Slope Intercept Form:

y	$=m x+b$		Slope Intercept Form
y	$=(2) x+b$		Substitute m
(3)	$=(2)(1)+b$		Substitute x and y
3	$=2+b$		
-2	-2		
	$1=\mathrm{b}$		Solve for b
y	$=m x+b$		
$y=(2) x+(1)$		Slope Intercept Form	
		Substitute m and b	

$y=2 x+1<$ They are equal
Slope Point Form:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Slope Point Form } \\
y-y_{1} & =2\left(x-x_{1}\right) & & \text { Substitute } \mathrm{m} \\
y-(3) & =2(x-(1)) & & \text { Substitute } \mathrm{x} \text { and } \mathrm{y}
\end{aligned}
$$

$$
y-3=2(x-1) \quad \begin{aligned}
& \text { Slope Point to } \\
& \text { Slope Intercept Form }
\end{aligned}
$$

$$
y-3=2(x-1)
$$

$$
y-3=2 x-2
$$

Distribute
Add 3 to Both Sides
Slope Intercept Form

Given two points: $\quad(0,1)$ and $(1,3)$

$$
\begin{array}{ll}
\begin{array}{ll}
\left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right)
\end{array} \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \begin{array}{l}
\text { Slope Equation } \\
\text { Substitute }
\end{array} \\
m=\frac{(3)-(1)}{(1)-(0)} & \text { With Brackets } \\
m=\frac{2}{1} & \text { Find } m \\
m=2 & \begin{array}{l}
\text { Repeat } \\
\text { Beginning of } \\
\text { page! }
\end{array} \\
\begin{array}{ll}
\text { It doesn't } \\
\text { matter which } \\
\text { point you use }
\end{array}
\end{array}
$$

Slope Intercept Form to Slope Point Form

$$
y=m x+b \longrightarrow y-y_{1}=m\left(x-x_{1}\right)
$$

General Form to Slope Point Form

$$
A x+B y+C=0 \longrightarrow \underset{(\mathrm{~N} / \mathrm{A})}{ } y-y_{1}=m\left(x-x_{1}\right)
$$

M10-7.5-Parallel $m=m /$ Perpendicular $m=-\frac{1}{m}$ Lines Notes
Parallel Lines: lines which never cross. Lines with the Same Slope. $m=m$

Notice: the graph of $y=2 x-2$ and $y=2 x+1$ are parallel because they have the same slope.
Perpendicular Lines: two lines which have Negative Reciprocal slopes and meet at $90^{\circ} . m=-\frac{1}{m}$

Notice: The slope of the one line is the negative reciprocal of the slope of the other.

M10-8.1 - Number of Intersections System Notes

$y=x-3$	$y=x-3$
$m=1$	$m=1$
$b=-3$	$b=-3$

Same slope Same y-intercept

M10-8.2-Point on Line Notes

Is $(1,3)$ a point on the line?

$$
\begin{array}{rlrl}
y & =x+1 & & (1,2) \tag{1,2}\\
& (x, y) \\
y & =x+1 \\
(3) & \neq(1)+1 \\
3 & \neq 2
\end{array} \quad \begin{array}{ll}
& \text { If it doesn't work } \\
\text { it's NOT a Point } \\
\text { on the Line. }
\end{array}
$$

Identify x and y
Substitute Point for x and y
Solve

Therefore Not the intersection!

M10-9.1-Substitution Notes

Solve by Sụbstitution

(1) $y=(x+1)$
(2) $y=(-2 x+4)$

Identify equation \# 1 Identify equation \# 2

$$
\begin{aligned}
y & =y \\
x+1 & =-2 x+4 \\
-1 & -1 \\
x & =-2 x+3 \\
+2 x & +2 x \\
\frac{3 x}{3} & =\frac{3}{3}
\end{aligned}
$$

Make them equal to each other. Do it!
(1) $y=x+1$
$y=(1)+1$
$y=2$
$(1,2)$

Solve

Substitute

Solve

Intersection point
$y=-2 x+4$
$y=x+1$

M10-9.2-Don't/Need to Isolate Substitution Notes

Substitution - Don't Need to Isolate
(1) $x=(3-y)$
(2) $2 y-2 x=10$

Identify equation \# 1
Identify equation \# 2
Put Brackets around what $x=$ in eq. \#1
Put Brackets around x in eq. \#2

Substitute
Distribute
Combine Like Terms
Solve

Substitute

Solve

Intersection point

If a variable is already isolated go ahead and substitute what that variable equals into the other equation.

Substitution - Need to Isolate
(1) $x+y=11$
(2) $2 x-2 y=6$
$x+y=11$
$-x \quad-x$ $y=(11-x)$

$$
\text { (2) } 2 x-2(y)=6
$$

$$
2 x-2(11-x)=6
$$

$$
2 x-22+2 x=6
$$

$$
4 x-22=6
$$

$$
+22+22
$$

$$
4 x=28
$$

$$
\frac{4 x}{4}=\frac{28}{4}
$$

(1)
$y=11-x$
$y=11-7$
$y=4$
$(4,7)$

Identify equation \# 1
Identify equation \# 2
Put Brackets around what $y=$ in eq. \#1
Put Brackets around y in eq. \#2
Isolate

Substitute

Solve
Substitute
Solve

Intersection point:

M10-9.3-Elimination Notes

Solving a system of equations using elimination

(1) $2 y=x-2$
(2) $y=x-3$
Identify equation \# 1 Identify equation \# 2
Subtract equations to eliminate x Solve
Substitute
(2) $y=x-3$
Solve
(1) $=x-3 \quad$ Intersection point:
Put brackets around what you're subtracting

$$
+3+3
$$

$$
4=x
$$

$x=4$

$(4,1)$

(1) $y+x=6$
(2) $y-x=4$ Identify equation \# 1

Identify equation \# 2

$$
\begin{gathered}
y+x=6 \\
+(y-x=4) \\
\hline 2 y+0 x=10
\end{gathered}
$$

$$
2 y=10
$$

$$
\frac{2 y}{2}=\frac{10}{2}
$$

$$
y=5
$$

Solve
(1) $y+x=6$
$(5)+x=6$
$-5 \quad-5$

$(1,5)$

Add equations to eliminate x
You could have subtracted equations to eliminate y

Substitute

Solve

Intersection point:

M10-9.4 - Line Up Elimination Notes

Solving a system of equations using elimination

(1) $y=-6 x+2$
(2) $y+4 x=0$
Identify equation \# 1 Identify equation \# 2

$$
\begin{aligned}
& \quad y=-6 x+2 \\
& +6 x+6 x \quad \text { Algebra } \\
& y+6 x=2
\end{aligned}
$$

$$
\begin{aligned}
& y+x=\# \\
& y+x=\#
\end{aligned}
$$

For
(1) $y+6 x=2$
(2) $y+4 x=0$

$$
\begin{array}{r}
(y+6 x=2) \\
-(y+4 x=0) \\
\hline 0 y+2 x=2
\end{array}
$$

$$
2 x=2
$$

$$
\frac{2 x}{2}=\frac{2}{2}
$$

$$
x=1
$$

(1) $y=-6 x+2$
$y=-6(1)+2$

Line up equations
Subtract equations to eliminate y
Solve
Substitute
Solve
Intersection point:

M10-9.5-Multiply/Fraction/Decimal Elimination Notes

Solving a system of equations using elimination
(1) $2 x-3 y=2$
(2) $x+2 y=8$
(2) $2(x+2 y=8)$ $2 x+4 y=16$

$$
\begin{gathered}
2 x-3 y=2 \\
-(2 x+4 y=16) \\
\hline 0 x-7 y=-14
\end{gathered}
$$

$$
-\frac{7 y}{-7}=-\frac{14}{-7}
$$

$$
y=2
$$

(2)

$$
\begin{array}{r}
x+2 y=8 \\
x+2(2)=8 \\
x+4=8
\end{array}
$$

$(4,2)$

Solving a system of equations using elimination

Identify equation \# 1
Identify equation \# 2

Multiply equation \#2 by 2
Line up equations

Subtract equations to eliminate x

Solve
Substitute

Solve

Intersection point:

Identify equation \# 1 Identify equation \# 2 Get Rid of Decimals

Multiply equation \#2 by 6 (LCD)
To get rid of
denominator
Subtract equations to eliminate x Solve

Substitute

Solve

Intersection point:

M10-9.6-Let Statement/Value of Notes

A person has 24 quarters and dimes.
let $q=\#$ of quarters \quad Let Statements

Equation

A person has some Conies. How much do they have in Conies?
let $t=\#$ toonies
Round the bottom of your t!

t	Value $\$$	Calculation
0	0	$0 \times 2=0$
1	2	$1 \times 2=2$
2	4	$2 \times 2=4$
t	$2 t$	$t \times 2=2 t$

Value of a Toonie \times \# Toonies

A person has the $\$ 2.30$ in Dimes, How many Dimes do they have?
let $d=\#$ of Dimes

d	Value $\$$	Calculation
0	0	$0 \times 0.1=0$
1	0.1	$1 \times 0.1=0.1$
2	0.2	$2 \times 0.1=0.2$
d	$0.1 d$	$d \times 0.1=0.1 d$

$0.1 d=2.30$
$\frac{0.1 d}{0.1}=\frac{2.30}{0.1}$

$0.1 \times 23=2.30$

An airplane is flying at a height of 400 m and descending at $5 \mathrm{~m} / \mathrm{s}$.
let $h=\operatorname{height}(m)$
let $t=$ time (s)

Jane's hair is 30 cm long and grows at 2 cm per month.
let $h=$ hair length (cm) let $t=$ time (months)

$$
h=20+2 m
$$

M10-9.6- $A x+B y=C$ Coins/Mixture Notes

Jay has 12 Total Coins of Quarters and Dimes worth $\$ 2.40$. How many does he have of each?

As scientist wants to make 50 L of a 40% acid solution. They mixed together a 30% acid solution with the 70% acid solution. How many litres of each solution must the scientist mix?
let $a=$ litres of $30 \% \mathrm{mix}$ let $b=$ litres of 70% mix

$$
\% \times \text { Amount }+\% \times \text { Amount }=\% \times \text { Amount }
$$

M10-9.6-y $=m x+b$ Cell Phone Word Problems Notes

Create Let Statements, an equation, and solve the equation.

A cell phone company Data Costs $\$ 40$ per month plus $\$ 0.1$ per Megabyte of Data.
Let $c=\cos t$
Let $d=\#$ megabytes of data

| If a person uses 480 megabytes |
| :--- | :--- |
| of Data what will month bill cost? |$\quad d=480$

If a person's bill is $\$ 52.60$, How
many Megabytes did the use?

$$
c=52.60
$$

Mega Cell Phone Company charges $\$ 30$ per month plus $\$ 0.2$ per megabyte of data. Which company would you choose?

Let $c=$ cost
Let $d=\#$ megabytes of data

$$
y=m x+b
$$

$\frac{1}{10} d+40$	$=\frac{2}{5} d+20$		
$\left(\frac{1}{10} d+40\right.$	$\left.=\frac{2}{5} d+20\right) \times 10$		
$d+400$	$=4 d+200$		
$\frac{200 d}{3}$	$=\frac{3 d}{3}$		
$d=\frac{1}{5} d+20$			
d	$=66.67$		

M10-9.6-s $=\frac{d}{t}$ Boat/Wind Word Problems Notes
A boat took 3 hours to travel 24 km with the current. On the return trip, the boat took 5 hours to travel 24 km against the current. Determine the speed of the current.
$x=$ speed of boat
$c=$ speed of current

The End

