M10-4.3-Mult/Add Div/Divide Exponent Laws HW

Write each product of powers as a single power.
$x^{2} \times x^{2}=x^{2+2}=x^{4}$
$y^{3} \times y^{4}=$
$3^{2} \times 3^{2}=$
$z^{3} \times z^{2}=$
$m^{3} \times m^{4}=$
$n^{4} \times n^{2}=$
$2^{2} \times x^{3}=$
$(2 x)^{2} \times(2 x)^{3}=$
$(3 y)^{2} \times(2 y)^{2}=$

Write each quotient of repeated multiplication division statement in faction form then simplify as a single power.

$$
\begin{array}{lll}
x^{4} \div x^{2}=\frac{\searrow \times x \times x \times x}{x \times x}=x^{2} & x^{3} \div x^{2}= & y^{2} \div y^{2}= \\
z^{5} \div z^{2}= & x^{3} \div x^{3}= & x^{2} \div x^{3}= \\
(3 x)^{5} \div(3 x)^{3}= & (2 x)^{6} \div(2 x)^{3}= & (2 x)^{8} \div(2 x)^{7}=
\end{array}
$$

Write each quotient of powers as a single power.

$$
\begin{array}{lcl}
x^{4} \div x^{2}=x^{4-2}=x^{2} & y^{4} \div y^{2}= & m^{4} \div m^{3}= \\
g^{7} \div g^{4}= & (-2 x)^{5} \div(-2 x)^{3}= & (-4 x)^{8} \div(-4 x)^{7}=
\end{array}
$$

Write each quotient of powers as a single power.

$$
\begin{array}{lll}
\frac{x^{5}}{x^{2}}= & \frac{y^{2}}{y}= & \frac{(-3 x)^{4}}{(-3 x)^{2}}= \\
\frac{m^{5}}{m^{2}}= & \frac{b^{3}}{b^{2}}= & \frac{(-7 x)^{5}}{(-7 x)^{2}}=
\end{array}
$$

M10-4.3-Distribution Exponent Laws HW

Write the following as a single power.
$\left(x^{3}\right)^{2}=x^{3 \times 2}=x^{6}$
$\left(x^{2}\right)^{3}=$
$\left(y^{3}\right)^{2}=$
$\left(2 z^{2}\right)^{5}=$
$\left(3 x^{3}\right)^{4}=$
$\left(x^{-1}\right)^{2}=$

Write as a multiplication of two powers.

$$
[7 \times x]^{2}=7^{2} x^{2}=49 x^{2}
$$

$[5 \times y]^{2}=$
$[m \times n]^{2}$

Distribute the power.

$$
\left(\frac{x}{y}\right)^{2}=\quad\left(\frac{3 y}{2 x}\right)^{2} \quad\left(\frac{180 x^{2}}{6 x}\right)^{2}=
$$

$$
\left(\frac{24 x^{5}}{2 x^{4}}\right)^{2}=
$$

$$
\left(\frac{5 x y}{35 y^{2}}\right)^{2}=
$$

$$
\left(\frac{4 x}{4 x}\right)^{2}=
$$

