M10-4.4 - Negative Exponents Laws Notes

Negative Exponents

$$
\begin{array}{lll|}
x^{-2}=\frac{1}{x^{2}} & \text { Bring to the bottom, make exponent positive } & x^{-a}=\frac{1}{x^{a}} \\
\frac{1}{x^{-2}}=\frac{x^{2}}{1} & \text { Bring to the top, make exponent positive } & \frac{1}{x^{-a}}=x^{a} \\
\hline
\end{array}
$$

$3 a^{-2}=\frac{3}{a^{2}} \quad$ Bring to the bottom, make exponent positive

Notice the 3 doesn't come down
$3^{-3} a^{-2}=\frac{1}{3^{3} a^{2}}$ Bring to the bottom, make exponent positive
$(2 x)^{-3}=\frac{1}{(2 x)^{3}}=\frac{1}{8 x^{3}}$ Bring to the bottom, make exponent positive

$$
\frac{x^{-2}+5}{3} \neq \frac{5}{3 x^{2}}
$$

Step 1

When working with negative exponents:

Start with a fraction "Over" sign.
Put anything not moved!
Move whatever needs to be moved.
If nothing is left on the top, put a 1.

When you can flip it!	$\left.\left(\frac{x}{y}\right)^{-2}=\frac{x^{-2}}{y^{-2}}=\frac{y^{2}}{x^{2}}\right)$
OR	Distribute Exponents Bring to the bottom, make exponent positive Bring to the top, make exponent positive
$\left.\frac{x}{y}\right)^{-2}=\left(\frac{y}{x}\right)^{2}\left(=\frac{y^{2}}{x^{2}}\right.$	Flip it and make the exponent positive

Alternate Subtraction Methods

$\frac{x^{2}}{x^{5}}=x^{2-5}=x^{-3}=\left(\frac{1}{x^{3}}\right)$
Subtract from the top

Theory

$\frac{x^{-2}}{x^{3}}=\frac{1}{x^{3} x^{2}}=\frac{1}{x^{5}}$
$\frac{x^{-2}}{x^{3}}=\frac{1}{x^{3-(-2)}}=\frac{1}{x^{5}}$

Bring Up, Add
OR
Subtract
$\frac{x^{2}}{x^{5}}=\frac{1}{x^{5-2}}=\frac{1}{x^{3}}$
Subtract from Bottom
$\frac{x^{2}}{x^{-3}}=x^{2} x^{3}=x^{5}$
$\frac{x^{2}}{x^{-3}}=x^{2-(-3)}=x^{5}$

Bring Down, Add
OR
Subtract From Bottom

