M10-7.1-Standard/General Form Notes

Graph the Line in Standard Form:

$3 x+2 y=6$	$\bigcirc \mathrm{R}$	
	\boldsymbol{x}	y
	0	
Y Intercept:		0
$3 x+2 y=6$	Equation	
$2(0)+2 y=6$	Put Zero in for x	
$2 y=6$	Solve	
$\underline{2 y}=\frac{6}{2}$		
$\frac{2}{2}=\frac{1}{2}$		
	(x, y)	
$y=3$	$(0,3)$	

X Intercept:

$$
\begin{array}{rlrl}
3 x+2 y & =6 & & \text { Equation } \\
3 x+2(0) & =6 & & \text { Put Zero in for } y \\
3 x & =6 & & \text { Solve } \\
\frac{3 x}{3} & =\frac{6}{3} & & \\
x & =2 & (x, y) \\
& (2,0)
\end{array}
$$

x and y intercept method

$3 x+2 y-6=0$	
Subtract 6 on Both	$A x+B y=C$
$A x+B y-C=0$	

Subtract 6 on Both
$A x+B y-C=0$
sides

Converting Forms

Standard to Slope Intercept

$$
A x+B y+C=0 \longrightarrow y=m x+b
$$

$$
3 x+2 y=6
$$

$$
-3 x \quad-3 x
$$

Equation

$$
2 y=-3 x+6
$$

Subtract $3 x$ to Both Sides
Slope $=-\frac{3}{2} \quad y-$ int: $(0,3)$
$\frac{2 y}{2}=-\frac{3 x}{2}+\frac{6}{2}$
Divide Both Sides by 2
$y=-\frac{3}{2} x+3$ Slope Intercept Equation

$$
\begin{gathered}
y=m x+b \leftharpoonup y \text {-intercept: }(0, b) \\
\uparrow \\
\text { Slope }=\frac{\text { rise }}{\text { run }}
\end{gathered}
$$

Slope Intercept to Standard

$$
y=m x+b \longrightarrow A x+B y+C=0
$$

Equation
$\left(y=-\frac{3}{2} x+3\right) \times 2 \quad$ Multiply Both Sides by $2\left(L C D^{*}\right)$

$$
2 y=-3 x+6
$$

$+3 x \quad+3 x$
Add $3 x$ to Both Sides

Standard From Equation
Subtract 6 from Both Sides

Standard Form Equation
$A x+B y=C$
$A x+B y-C=0$
$+x$ coefficient x, y, \#/= 0 Order No Fractions

M10-7.2-Slope Intercept Form ($y=m x+b$) Notes
Graphing Slope Intercept Form. Slope Intercept Method

$y=2 x+1 \leftharpoonup y$-intercept $:(0,1)$ \uparrow
 Slope $=\frac{2}{1}$

Find Equation in Slope Intercept Form

$y-$ int $:(0,-1) \quad$ slope $=m=\frac{2}{3}$

$$
y=m x+b
$$

$y=\frac{2}{3} x-1$

Equation
Substitute b,m

Steps:
Plot y - intercept: $(0,1)$
Use slope: $\frac{2}{1} \longleftarrow$ Rise
Plot new Point: $(1,3)$
Put Point in Other Direction
Draw New Points
Draw line
Arrow Tips

x	y
-1	-1
0	1
1	3
-2	-3

$$
y-\text { int }:(0,2) \quad \text { slope }=m=-\frac{3}{1}
$$

$$
y=m x+b \quad \frac{-3}{1}=\frac{3}{-1}=-\frac{3}{1}
$$

$$
y=-\frac{3}{1} x+2
$$

M10-7.3 - Slope Point Form $y-y_{1}=m\left(x-x_{1}\right)$ Notes

Find Equation in Slope Intercept Form

Steps:
Point

Find Point
$(2,1)$
$\left(x_{1}, y_{1}\right)$
Find Slope \quad slope $=m=\frac{3}{1}$
Equation

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Substitute m

$$
\mathrm{m}_{\text {Point }}^{\mathrm{m}} y-1=\frac{3}{1}(x-2)
$$

Steps:
Find Point
Point $(-1,-2)$
$\left(x_{1}, y_{1}\right)$
Find Slope
Equation

$$
\text { slope }=m=-\frac{1}{2}
$$

$y-y_{1}=m\left(x-x_{1}\right)$

Substitute with Brackets

Substitute m

$$
y-(-2)=-\frac{1}{2}(x-(-1))
$$

Point
Simplify

$$
y+2=-\frac{1}{2}(x+1)
$$

Graph Slope Intercept Form

Steps:
Equation

Write Form	$y-y_{1}=m\left(x-x_{1}\right)$			
Find Point	Point		Notice it's the	
:---	:---			
Graph Point	$(-2,-1)$			
	$\left(x_{1}, y_{1}\right)$		Opposite of what's	
:---				
Inside the Brackets				

Find Slope Graph Slope

$$
y+1=\frac{2}{3}(x+2)
$$

M10-7.4 - Find Equation Slope Int/Slope Pt Form Algebra Notes

Given a point and the slope: $(1,3) \quad m=2$
(x, y)

$$
y-y_{1}=m\left(x-x_{1}\right) \longrightarrow y=m x+b
$$

Slope Intercept Form:

y	$=m x+b$		Slope Intercept Form
y	$=(2) x+b$		Substitute m
(3)	$=(2)(1)+b$		Substitute x and y
3	$=2+b$		
-2	-2		
	$1=\mathrm{b}$		Solve for b
y	$=m x+b$		
$y=(2) x+(1)$		Slope Intercept Form	
		Substitute m and b	

$y=2 x+1<$ They are equal
Slope Point Form:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Slope Point Form } \\
y-y_{1} & =2\left(x-x_{1}\right) & & \text { Substitute } \mathrm{m} \\
y-(3) & =2(x-(1)) & & \text { Substitute } \mathrm{x} \text { and } \mathrm{y}
\end{aligned}
$$

$$
y-3=2(x-1) \quad \begin{aligned}
& \text { Slope Point to } \\
& \text { Slope Intercept Form }
\end{aligned}
$$

$$
y-3=2(x-1)
$$

$$
y-3=2 x-2
$$

Distribute
Add 3 to Both Sides
Slope Intercept Form

Given two points: $\quad(0,1)$ and $(1,3)$

$$
\begin{array}{ll}
\begin{array}{ll}
\left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right)
\end{array} \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \begin{array}{l}
\text { Slope Equation } \\
\text { Substitute }
\end{array} \\
m=\frac{(3)-(1)}{(1)-(0)} & \text { With Brackets } \\
m=\frac{2}{1} & \text { Find } m \\
m=2 & \begin{array}{l}
\text { Repeat } \\
\text { Beginning of } \\
\text { page! }
\end{array} \\
\begin{array}{ll}
\text { It doesn't } \\
\text { matter which } \\
\text { point you use }
\end{array}
\end{array}
$$

Slope Intercept Form to Slope Point Form

$$
y=m x+b \longrightarrow y-y_{1}=m\left(x-x_{1}\right)
$$

General Form to Slope Point Form

$$
A x+B y+C=0 \longrightarrow \underset{(\mathrm{~N} / \mathrm{A})}{ } y-y_{1}=m\left(x-x_{1}\right)
$$

M10-7.5-Parallel $m=m /$ Perpendicular $m=-\frac{1}{m}$ Lines Notes
Parallel Lines: lines which never cross. Lines with the Same Slope. $m=m$

Notice: the graph of $y=2 x-2$ and $y=2 x+1$ are parallel because they have the same slope.
Perpendicular Lines: two lines which have Negative Reciprocal slopes and meet at $90^{\circ} . m=-\frac{1}{m}$

Notice: The slope of the one line is the negative reciprocal of the slope of the other.

