M ath 8 Notes

Nicholas Cragg
Knack Publishing www.knackacademics.com nick@knackacademics.com 604.505.2867

One over two equals what over 4?

$$
\frac{1}{2}=\frac{?}{4} \rightarrow \underbrace{\begin{array}{l}
\text { Multiply bottom by } 2 \\
\text { Multiply top } \\
\text { by } 2
\end{array}}_{\frac{1}{2}=\frac{2}{4}}
$$

One over three equals what over 6?

Set it up!	$\stackrel{\times 2}{2}$	$x=1 \times 2=2$	
$-\frac{5}{9}$	$\frac{1}{3}=\frac{x}{6}$		
\#:\# Or	\checkmark	? or	matter
\#:\# Ratios		No!	

$\div 2$
$\times 2\left(\frac{1}{2}=\frac{2}{4}\right) \times 2$
Multiply left by 2 Multiply right by 2

$\frac{1}{2}$	$=\frac{x}{4}$	
	Get an LCD!	
$\frac{2 \times 1}{2 \times 2}$	$=\frac{x}{4}<$	$x=2$
$\frac{2}{4}$	$=\frac{x}{4}$	LCD

I'm not afraid to work on the bottom of the fraction!
Five over twenty equals one over what?

$$
\begin{aligned}
& \begin{array}{c}
5 \longdiv { 2 . 4 } \\
-\quad 12.9 \\
-\quad 10 \\
\hline 20
\end{array} \\
& \begin{array}{r}
-\quad 20 \\
\hline 0
\end{array} \\
& 0 \\
& \text { Multiply left in down by } 2 \\
& \text { Divide right in up by } 2 \\
& \begin{array}{|l|}
\hline \frac{5}{3}=1 . \overline{6} \quad \text { Calculator } 1 . \overline{6}=1.666666 \ldots \\
\hline
\end{array} \\
& \text { Calculator } 1 . \overline{6}=1.666666 \text {.. }
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\substack{x=7.2}}{\text { O! }} \\
& \times 1 . \overline{6}\left(\frac{3}{5}=\frac{x}{12}\right) \div 1 . \overline{6} \quad \begin{array}{l}
\text { Multiply left in down by } 2 \\
\text { Divide right in up by } 2
\end{array}
\end{aligned}
$$

Divide top by 5
Divide bottom by 5
$20 \div 5=4$

$$
\begin{gathered}
\text { Ratios Too! } \\
\times 2\binom{1: 2}{2: 4} \times 2 \\
\text { Same Rules! }
\end{gathered}
$$

Three over five equals what over twelve?

M8-2.2-Similar Shapes Notes

M 8-2.7-Ratios M arbles Notes

You have 3 Blue marbles and 2 Red marbles in a box, a total 5 marbles.

What is the ratio of blue to red marbles?
What is the ratio of blue to red marbles?

3 Blue: 2 Red

2 Red: 3 Blue

What is the ratio of blue marbles to total marbles?

3 Blue : 5 Total

What is the ratio of red marbles to total marbles?

2 Red : 5 Total

2:5

If a larger box has 9 Blue marbles in the same ratio as above how many Red marbles and Total marbles are in the box?

[^0]
M 8-3.2-Solving Square Roots Prime Factorization Notes

Perfect Square: A number that is the product of the same two factors. $9=3 \times 3=3^{2}$

| 3 | | |
| :--- | :--- | :--- | :--- |
| \square | | |
| \square | $\sqrt{9}=3$ | $3^{2}=3 \times 3=9$ |

$$
\sqrt{4}=?
$$

4 is a perfect square because it is a product of the same two factors: 2 and 2.

$$
\begin{aligned}
\sqrt{4} & =\sqrt{2 \times 2} & & \text { Two identical numbers } \\
\sqrt{4} & =\sqrt{2 \times 2} & & \text { under a square root: one } \\
& =(2) & & \text { comes out. Nothing is left. }
\end{aligned}
$$

〇R $\begin{aligned} & \text { Think about two identical numbers that } \\ & \text { multiply together to make that number }\end{aligned}$

36 is a perfect square because it is a product of even pairs of numbers: 3 and 2 , and 3 and 2.

Two identical pairs of numbers under a square root: one of each comes out. Nothing is left.

$$
\sqrt{36}=?
$$

$\sqrt{81}=$?

OR

81 is a perfect square because it is a product of even pairs of numbers: 3 and 3 , and 3 and 3.

$$
\begin{aligned}
& \sqrt{81}=\sqrt{3 \times 3 \times 3 \times 3} \\
& \sqrt{81}=\sqrt{(3 \times 3 \times 3 \times 3)} \\
& \sqrt{81}=3 \times 3 \\
& \sqrt{81}=9
\end{aligned}
$$

Two identical pairs of numbers under a square root: one of each comes out. Nothing is left.

Notice: when solving square roots using prime factorization either circle a pair of two identical numbers or multiple pairs of identical numbers.

M 8-3.2-Solving Cube Roots Prime Factorization Notes

Perfect Cube: a number that is a product of the same three factors. $8=2 \times 2 \times 2=2^{3}$

$$
\sqrt[3]{27}=3
$$

$$
3 \times 3 \times 3=3^{3}=27
$$

$\sqrt[3]{27}=$?

27 is a perfect cube because it is the product of three identical factors:

OR
Think about three identical numbers that multiply together to make that number

$$
\sqrt[3]{64}=?
$$

(2) (2)

OR

$$
\left.\begin{array}{rl}
\sqrt[3]{64} & =\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2} \\
\sqrt[3]{64} & =\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2} \\
& =2 \times 2 \\
& =4
\end{array} \quad \begin{array}{l}
\text { Three identical } \\
\text { numbers under a } \\
\text { square root: one of } \\
\text { each comes out. }
\end{array}\right]
$$

Notice: when solving cube roots using prime factorization either circle a triplet of three identical numbers or multiple triplets of identical numbers.

M 8-3.3- Identifying "a, b, c" Notes

Identifying a, b, and c .
a

Identifying a, b, and c .

3

4
6

$a=8$
$b=6$
$c=10$

8

Area $=3 \times 3$
Area $=9$

Area $=4 \times 4$
Area $=16$

9 squares +16 squares $=25$ squares

$$
\sqrt{25}=5
$$

Solve for "c".

4

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
3^{2}+4^{2} & =c^{2} \\
9+16 & =c^{2} \\
25 & =c^{2} \\
\sqrt{25} & =\sqrt{c^{2}} \\
5 & =c
\end{aligned}
$$

Solve for "a" or "b".
6

b

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
6^{2}+b^{2} & =10^{2} \\
36+b^{2} & =100 \\
-36 & -36 \quad \text { R } \\
b^{2} & =64 \\
\sqrt{b^{2}} & =\sqrt{64} \\
b & =8
\end{aligned}
$$

Remember: The Area of the two small squares adds to the area of the large square.
$c=\sqrt{a^{2}+b^{2}}$

Remember:

Bigger square minus
smaller square equals other smaller square.

$$
\begin{aligned}
c^{2}-a^{2} & =b^{2} \\
10^{2}-6^{2} & =b^{2} \\
100-36 & =b^{2} \\
64 & =b^{2} \\
\sqrt{64} & =\sqrt{b^{2}} \\
b & =8
\end{aligned}
$$

$$
b=\sqrt{c^{2}-a^{2}}
$$

M 8-4.1-Converting Fractions, Decimals \& \% Notes

Fraction to decimal:

$\frac{3}{4}=0.75$ Calculator

Decimal to Fraction:

300
$-\quad$ Calculator

Decimal to Percent

$$
0.06=\frac{6}{100}=6 \% \text { Place } \begin{aligned}
& \text { Value } \begin{array}{l}
\text { Hundredth } \\
\text { Place }
\end{array} \\
& \hline \frac{\%}{100}
\end{aligned} \begin{aligned}
& 0.06 \times 100=6 \% \\
& \begin{array}{l}
\text { M ultiply } \\
\text { decimal by } 100
\end{array}
\end{aligned} \begin{aligned}
& 0.06=6 \% \\
& \text { M ove decimal } 2 \\
& \text { places to the right }
\end{aligned}
$$

Percent to Decimal

Fraction to percent:

Percent to Fraction

$75 \%=\frac{75}{100}=\frac{\overbrace{2}^{2}}{2}$
$\div 25$

Equal Fractions
OR
$75 \%=0.75=\frac{75}{100}=\frac{3}{4}$
Divide percent by 100
Place Holder Equal Fractions

M8-4.2 - Percentage Notes

Long Division

Total

Increase 200 by 15%	$15 \%=0.15$

Less than 5 Round Down

$5.7(4)=5.7$	Round
$5.70=5.8$	To
Tenths	
5 or M ore Round Up	

Decrease 200 by 15%

Find the Percent Change increase from 10 to 12.
$\%$ Change $=\frac{\text { Final }- \text { Initial }}{\text { Initial }}$
$\%$ Change $=\frac{12-10}{10}=\frac{2}{10}=0.2=20 \%$

3

(4)

$M=100+40=140 \%$

M8-5.0-Area/Perimeter Shapes Notes

$w=2 \mathrm{~cm}$

$w=3 m$

$b=5$ in
Note: Not true triangle

Perimeter $=$ Circumference

$$
r=\frac{d}{2}
$$

M 8-5.1-Net Surface Area Notes

Cube

Draw a square
Draw a square up to the right Connect corners

Draw a rectangle Draw a rectangle up to the right Connect corners

Draw the bottom
Label Dimensions
Fold down the sides.
Fold off the top.

Rectangular Prism

Draw the bottom.
Fold down the sides. Fold off the top.

Cylinder

Draw two circles not touching Connect the circles

Draw a triangle
Triangular Prism
Draw a triangle up to the right

Draw the bottom.
Fold down the sides.
Fold down the front and back.
Draw a right triangle
Draw another up to the right Connect corners

M 8-5.2-Cube/Rectangular Prism Surface Area Notes

Rectangular Prism

Notice: the top and bottom are the same, the front and back are the same, and both sides are the same.

M 8-5.3-Cylinder/Triangular Prism Surface Area Notes

Notice: the width of the rectangle is the circumference of the circle.

Triangular Prism

Notice: the front and back are the same, and sides are the same.

M 8-5.4 - Surface Area M issing Dimension Notes

Find the missing dimension of the following shapes.

$$
S A=326.7 \mathrm{~m}^{2}=104 \pi \mathrm{~m}^{2}
$$

OR
$S A=104 \pi \mathrm{~m}^{2}$
$S A=2 \pi r^{2}+2 \pi r h$
$104 \pi=2 \pi(4)^{2}+2 \pi(4) h$
$\frac{104 \pi}{\pi}=\frac{32 \pi}{\pi}+\frac{8 \pi h}{\pi}$
$104=32+8 h$
$-32-32$
$\frac{72}{8}=\frac{8 h}{8}$
$h=9 \mathrm{~m}$

$$
\begin{gathered}
S A=2 \pi r^{2}+2 \pi r h \\
326.7=2 \pi(4)^{2}+2 \pi(4) h \\
326.7=100.53+25.13 h \\
-100.53-100.53 \\
26.17=25.13 h \\
\frac{226.17}{25.13}=\frac{25.13 h}{25.13} \\
9=h \\
h=9 m
\end{gathered}
$$

M 8-7.1-Quadrilateral Volume Notes

Volume: equal to the area of the base time height: " $V=$ (area of base) $\times($ height $)$ ".
The base must be the same as the top.

Volume
$V=($ area of base $) \times($ height $)$
$V=(l \times w) \times(h)$
$V=l w h$
$V=l w h$
$V=3 \times 3 \times 3$

$$
V=27 \mathrm{~cm}^{3}
$$

If Area of Base Given

$V=($ area of base $) \times($ height $)$
$V=(9) \times(3)$
$V=27 \mathrm{~cm}^{3}$

Rectangular Prism

Volume

$$
\begin{aligned}
V & =(\text { area of base }) \times(\text { height }) \\
V & =(l \times w) \times(h) \\
V & =l w h \\
V & =l w h \\
V & =4 \times 2 \times 3 \\
V & =24 \mathrm{~cm}^{3}
\end{aligned}
$$

Notice: the formula for the volume of a cube and a rectangular prism is just: $V=l w h$.

M 8-7.2-Cylinder/Triangular Prism Volume Notes

Volume: equal to the area of the base times the height: "V=(area of base) $\times($ height $)$ ". The base must be the same as the top.

Cylinder

$V=($ area of base $) \times($ height $)$
$V=\left(\pi r^{2}\right) \times(h)$
$V=\pi r^{2} h$

$$
V=\pi r^{2} h
$$

$$
V=(3.14)(3)^{2}(8)
$$

$$
V=226.19 \mathrm{~cm}^{3}
$$

Volume

$V=($ area of base $) \times($ height $)$
$V=\left(\frac{b \times h}{2}\right) \times(H)$
$V=\frac{b h}{2} \times H$

$$
\begin{aligned}
& V=\frac{b h}{2} \times H \\
& V=\frac{(8)(3)}{2} \times(10) \\
& V=120 \mathrm{~cm}^{3}
\end{aligned}
$$

Notice: the volume is calculated by finding the area of the base of the triangular prism using the height of the triangle, h, multiplied by the height of the prism, H.

M 8-7.3-Rectangular Prism M issing Length Notes

Find the missing length for the shapes below.

w
h

$$
V=402.12 f t^{3}
$$

$$
\begin{aligned}
V & =l \times w \times h \\
60 & =2 \times w \times 3 \\
60 & =6 \times w \\
\frac{60}{6} & =\frac{6 \times w}{6} \\
10 & =w \\
w & =10 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
V & =\pi r^{2} h \\
402.12 & =\pi(4)^{2} h \\
402.12 & =50.27 h \\
\frac{402.12}{50.27} & =\frac{50.27 h}{50.27} \\
8 & =h \\
h & =8 f t
\end{aligned}
$$

M 8-6.0-LCM GCF Notes

Lowest common multiple (LCM): the lowest number both numbers go into Greatest common factor (GCF): the biggest number that goes into two numbers

8 and 12?

Lowest Common Multiple (LCM):

8 and $12=24$	$8: 8,16,(24) 32$
$12: 12,(24) 36$	

$8=2^{3}$
$12=2^{2} \times 3^{1}$
Index Form
$L C D=2^{3} \times 3^{1}$

LCM: All the numbers to the highest exponent

Prime Factorization Tree
8 and 12:

$12=2 \times 2 \times 3$ $12=2^{2} \times 3$
$8=2^{3}$
$12=2^{2} \times 3^{1}$
Index form:
$G C F=2^{2}=$

72 and 60:
GCF: Common numbers to the lowest exponent

72 and 60?

LCM $=2 \times 2 \times 2 \times 3 \times 3 \times 5=360$
LCM $=2^{3} \times 3^{2} \times 5^{1}=360$

LCM: All the numbers to the highest exponent

$$
\begin{array}{rl}
72 & =2 \times 2 \times 2 \times 3 \times 3 \\
60 & =32 \\
22^{2} & 5 \\
G C F & =2 \times 2 \times \\
G C F & =2^{2} \times 3^{1}=12
\end{array}
$$

GCF: Common numbers to the lowest exponent
$72=2 \times 2 \times 2 \times 3 \times 3 \quad$ OR
$72=2^{3} \times 3^{2}$
LCM :
72: 72,144,216,288 360
$60: 60,120,180,240,300,360$
GCF:
72: 1,2,3,4,6,8,9 12, 8, 24,36,72
60: 1,2,3,4,5,6,10,12, $15,20,30,60$

2 goes into even numbers ending in $0,2,4,6$, or 8 3 goes into numbers whose digits add to multiples of 3.369 ? $3+6+9=18.3$ goes into 18 ! 3 goes into 369. 5 goes into numbers ending in 5 or 0
Or do Long Division or use calculator

M 8-6.1-Simplifying Expanding Fractions Notes

Simplification

$\frac{2}{4}=$
$\frac{2 \div 2}{4 \div 2}=\left(\frac{1}{2}\right)$
Divide the top and bottom by the GCF
$\frac{6}{9}=$
$\frac{6 \div 3}{9 \div 3}=\left(\frac{2}{3}\right.$
Divide the top and bottom by the GCF

Rule: Do to the top as you did to the bottom.

Expansion

$\frac{1}{2}=$
$\frac{1 \times 2}{2 \times 2}=\left(\frac{2}{4}\right.$
Multiply the top and bottom by an integer.
$\frac{1}{2}=$
$\frac{1 \times 3}{2 \times 3}=\left(\frac{3}{6}\right.$
Multiply the top and bottom by an integer.

M 8-6.2- M ultiplying/Cross Cancelling/Dividing Fractions Notes
$\frac{2}{3} \times \frac{4}{5}=$

Multiply tops: $2 \times 4=8$
Multiply bottoms: $3 \times 5=15$

$$
\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}
$$

To multiply fractions just multiply tops and multiply bottoms.

$$
2 \times \frac{3}{5}=\frac{2}{1} \times \frac{3}{5}=\frac{6}{5}
$$

$$
a \times \frac{b}{c}=\frac{a}{1} \times \frac{b}{c}=\frac{a b}{c}
$$

Cross Cancelling

$$
\begin{array}{ll}
\frac{1}{2} \times \frac{2}{3}=\frac{2}{6}=\left(\frac{1}{3}\right) & \begin{array}{l}
\frac{1}{2} \times \frac{2}{3}=\frac{1}{\not 2} \times \frac{2}{3}=\frac{1}{3} \\
\frac{1}{4} \times \frac{2}{3}=\frac{2}{12}=\left(\frac{1}{6}\right.
\end{array} \\
\begin{array}{l}
\text { Cross a } 2 \text { off } \\
\text { the top and }
\end{array} \\
\frac{1}{3}=\frac{2}{4} \times \frac{1}{3}=\frac{1}{6} & \frac{2}{4}=\frac{1}{2}
\end{array}
$$

$\frac{1}{2} \div \frac{4}{7}=$
$\frac{1}{2} \times \frac{7}{4}=$
Flip second fraction, change to multiplication. $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}$ $\frac{1 \times 7}{2 \times 4}=\frac{7}{8}$

To divide fractions just flip the second fraction, and change divided by to multiplication and follow steps above.

$$
\begin{aligned}
& \frac{\left(\frac{1}{2}\right)}{\left(\frac{4}{7}\right)}=\frac{1}{2} \div \frac{4}{7}=\frac{1}{2} \times \frac{7}{4}=\frac{7}{8} \\
& \frac{3}{\left(\frac{5}{7}\right)}=3 \div \frac{5}{7}=\frac{3}{1} \times \frac{7}{5}=\frac{21}{5} \\
& \frac{\left(\frac{2}{3}\right)}{5}=\frac{2}{3} \div 5=\frac{2}{3} \div \frac{5}{1}=\frac{2}{3} \times \frac{1}{5}=\frac{2}{15}
\end{aligned}
$$

$$
\frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)}=\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}
$$

$$
\frac{a}{\left(\frac{b}{c}\right)}=a \div \frac{b}{c}=a \times \frac{c}{b}=\frac{a c}{b}
$$

$$
\frac{\left(\frac{a}{b}\right)}{c}=\frac{a}{b} \div c=\frac{a}{b} \times \frac{1}{c}=\frac{a}{b c}
$$

M 8-6.3- Mixed Numbers Improper Fractions Notes

Mixed fraction		Fraction
$2 \frac{3}{5} \leftarrow$		$\rightarrow \frac{13}{5}$
M ixed fraction		\rightarrow Fraction
$2 \frac{3}{5}$	$=$	$\underline{\text { bottom } \times \text { left }+ \text { top }}$
25	-	bottom
	-	$5 \times 2+3$
	=	${ }^{13}$

Fraction \longrightarrow Mixed fraction $\frac{13}{5}$

M 8-6.4-Adding Subtracting Fractions Notes

Steps: Get the same bottom (LCD), do to top, do to bottom, add or subtract tops.
Lowest common denominator (LCD): the lowest common multiple of the denominators
$\frac{1}{2}+\frac{1}{2}=$
If the denominators are the same, we already have the LCD.

$$
L C D=2
$$

$\frac{1+1}{2}=$ Add numerators: $1+1=2$

$\begin{array}{ll}\frac{1}{2}+\frac{1}{3} & = \\ \frac{3 \times 1}{3 \times 2}+\frac{1 \times 2}{3 \times 2}= & \begin{array}{l}\text { Multiply the top and bottom of each fraction by the } \\ \text { denominator of the other fraction. }\end{array} \\ \text { This will always give you a common denominator (not } \\ \text { necessarily the LCD). }\end{array}$

$$
\frac{1}{2}+\frac{1}{3}=\quad \frac{\square}{6}+\frac{\square}{6}=6 \quad \frac{3 \times 1}{3 \times 2}+\frac{1 \times 2}{3 \times 2}=\quad \frac{3}{6}+\frac{2}{6}=\frac{5}{6}
$$

$$
\frac{3}{4}-\frac{1}{6}=
$$

M ultiples of 4: 4, 8, 12, 16, 20

$$
L C D=12
$$

M ultiples of 6: 6, 12. 18,24
$\frac{3 \times 3}{3 \times 4}-\frac{1 \times 2}{6 \times 2}=$
$\frac{9}{12}-\frac{2}{12}=\frac{7}{12}$

Multiply top and bottom of first fraction by 3 to get 12 in the denominator. M ultiply top and bottom of second fraction by 2 to get 12 in the denominator.

Subtract the numerators.

M 8-8.1-Adding/Subtracting Number Line Notes

$$
2-4=
$$

$2 \longrightarrow$ starting point, place pen on $2 \circ$
$-\longrightarrow$ "left," move left
$4 \longrightarrow$ move left 4

$$
\begin{aligned}
& 2+3= \\
& 2 \longrightarrow \text { starting point, place pen on } 2 \circ \\
& +\longrightarrow \text { "right," move right } \\
& 3 \longrightarrow \text { move right } 3
\end{aligned}
$$

$$
2+3=5 \text { Check on Calculator! }
$$

Same Plus

$5+(+2)$	$7-(-4)$
$5++2$	$7--4$
\downarrow	\downarrow
$5+2$	$7+4$
Same Plus	
7Check on Calculator!	Same Plus Check on Calculator!

If you have two of the same sign side-by-side it becomes a positive sign.

Different Minus

If you have two different signs side-by-side it becomes negative

M 8-8.2- $\times \div$ Same Plus, Different M inus Notes

If you multiply or divide numbers with two of the same sign we follow the rule "Same Plus."

$$
\begin{aligned}
& +\times+=+ \\
& -\times-=+ \\
& +\div+=+ \\
& -\div=+ \\
& \text { "Same plus" }
\end{aligned}
$$

If you multiply or divide numbers with two different signs we follow the rule "Different M inus."

Don't forget about signs side-by-side!

M8-8.3-BEDM AS: Order of Operations Notes

B - brackets	Brackets first
E - exponents	Exponents second
D - division	Division
M - multiplication	Multiplication
A - addition	Addition
S - subtraction	Subtraction \quad In order from left to right

```
3\times4+2=
    12+2=14
```

$\begin{aligned} 10-4 \div 2 & = \\ 10-2 & =8\end{aligned}$
$\begin{aligned} 2^{3}+4 & = \\ 2^{3}+4 & = \\ 8+4 & =12\end{aligned} \quad \begin{aligned} & 2_{\text {Base }}^{2}\end{aligned} \quad \begin{aligned} & \text { Exponent } \\ & R_{\text {Ba }}\end{aligned}$
$2(3+4)^{2}=$ $2(7)^{2}=$ $2(7)^{2}=$ $2(49)=98$
$2-3+4=$
$-1+4=3$

Multiply first
Add second

Divide first
Subtract second

Exponents first Addition second

Brackets first
Exponents second
Multiply third

Subtraction First
Addition Second

Do side work Off to the Right

M 8-9.1- Plotting Points Graph Notes

(x, y) A point on a graph is given by an "ordered pair"

Plot the following table of values:

\boldsymbol{x}	y	Ordered Pairs
2	-3	$(2,-3)$
-4	-1	$(-4,-1)$
-3	5	$(-3,5)$
0	0	$(0,0)$
4	0	$(4,0)$
0	-3	$(0,-3)$

Steps to plot a point:

1. Find the x location on the x-axis. (The number in the left of the brackets.)
2. Go straight up or down to the y value. (The number on the right of the brackets).
3. Draw and label the point.

M9-9.2-Graphing TOV: $y=x, y=x+1$ Notes

Graph: $y=x$
Start with an
empty Table of

Values		$y=x$		Ordered Pairs
\boldsymbol{x}	y	\boldsymbol{x}	\boldsymbol{y}	
-2		-2	-2	($-2,-2$)
-1		-1	-1	$(-1,-1$
0		0	0	$(0,0)$
1		1	1	$(1,1)$
2		2	2	$(2,2)$

Choose Logical
x Values
$\begin{array}{lllll} & & \\ y=x & y=x & y=x & y=x & y=x \\ y=(-2) & y=(-1) & y=(0) & y=(1) & y=(2) \\ y & (-2,-2) & (-1,-1) & (0,0) & (1,1) \\ & & & & \end{array}$
(Substitute with
Write the Formula Brackets)
Substitute (x) values in the Formula Put the y value into the Table
Write the Point (x, y)
Graph and Label the Points (x, y)
Draw and Label the Line (with Arrow Tips)

Graph: $y=x+1$

$y=x+1$		Ordered Pairs
\boldsymbol{x}	y	
-2	-1	$(-2,-1)$
-1	0	$(-1,0)$
0	1	$(0,1)$
1	2	$(1,2)$
2	3	$(2,3)$

$\bigcirc R$ Do it in your head!
$y=x+1$
$y=(-2)+1$
$y=-1$
$(-2,-1)$
$y=x+1$
$y=(-1)+1$
$y=0$
$(-1,0)$
$y=x+1$
$y=(0)+1$
$y=1$
$(0,1)$

$(0,1)$
$y=x+1$
$y=(1)+1$
$y=2$
$(1,2)$
Notice: the graph of $y=x+1$ is the graph of $y=$ x, moved up 1 . (Or Left One*)
Graph: $y=2 x$

$y=2 x$	
x	y
-2	-4
-1	-2
0	0
1	2
2	4

Ordered
Pairs
$(-2,-4)$
$(-1,-2)$

$y=2 x$ $y=2(-2)$ $y=-4$	$y=2 x$ $y=2(-1)$ $y=-2$	$y=2 x$ $y=2(0)$ $y=0$	$y=2 x$ $y=2(1)$ $y=2$
$(-2,-4)$		Notice: the graph of $y=2 x$ is twice as steep as the graph of $y=x$.	

Graph: $\quad y=2 x+1$

$\boldsymbol{y}=\mathbf{2 x}+\mathbf{1}$

\boldsymbol{x}	\boldsymbol{y}
-2	-3
-1	-1
0	1
1	3
2	5

Ordered Pairs

$(-2,-3)$
$(-1,-1)$
$(0,1)$
$(1,3)$
$(2,5)$
$y=2 x+1$
$y=2 x+1$
$y=2 x+1$
$y=2(-2)+1$
$y=2(-1)+1$
$y=2(0)+1$
$y=-4+1$
$y=-2+1$
$y=0+1$
$y=-3$
$(-2,-3)$
$(-1,-1)$
$y=1$
$(0,1)$

Notice: the graph of $y=2 x+1$ is the graph of $y=$ $2 x$ up 1 .

The Golden Rule: Whatever you do to the right side of the equal sign, do to the left side.

What plus $1=4$?

$$
x=4
$$

M 8-10.1-" $\pm x \pm a=b "$ AlgebranNotes \qquad

Solve for x, by subtracting to both sides.
$x+5=9$
$x+5=9$
$-5-5 \quad$ Subtract 5 from both sides

Both sides: The Left Hand
Side and the Right Hand
Side of the Equal Sign

$\begin{aligned} x+\not p=9 & \text { Cross it off } \\ -\not p & -5\end{aligned}$
$5-5=0$

Short Forms

$$
x=9-5
$$

$x=4$ Circle Answer

Check Answer

$$
\begin{aligned}
x+5 & =9 \\
(4)+5 & =9 \\
9 & =9
\end{aligned} \quad
$$

Question
Substitute with Brackets
Left Hand Side M ust Equal Right Hand Side

Solve for x, by adding to both sides.

$$
\text { Solve for } x \quad \text { If you }
$$

$$
x-3=7 \quad \text { accidentally get }
$$

$$
\begin{array}{ll}
-7 & -7
\end{array}
$$

$$
x-10=0
$$

just keep going!

$$
+10+10
$$

$$
x=10
$$

$x-3=7$
$x-3=7$
$+3+3$
We are always doing the opposite
operation to both sides of the equation
$+3+3$
Add 3 to both sides
$\begin{array}{r}x-\not x=7 \\ +p=3\end{array}$
$x=7+3$
Cross it off

Solve for \boldsymbol{x}, by subtracting to both sides. Then Dividing by $\mathbf{- 1}$.

$$
-x+2=5
$$

$$
\begin{aligned}
-x+y^{2} & =5 \\
-1 & -2 \quad \text { Subtract } 2 \text { from both sides }
\end{aligned}
$$

$$
\frac{f^{x}}{-1}=\frac{3}{-1} \quad \begin{aligned}
& \text { Divide both sides by }-1 \\
& \text { Cross it off }
\end{aligned}
$$

$$
x=-3
$$

$$
\begin{aligned}
& \text { Alternate Solution } \\
& \begin{aligned}
&-x+2=5 \\
&+x+x \\
& 2=5+x \text { Add } x \text { to both sides } \\
&-5=5 \text { Subtract } 5 \text { from both sides } \\
&-3=x \text { Divide both sides by }-1 \\
& x=-3 \text { Mirror } \\
& x+x=5+x \text { Can't add unlike terms! } \\
& \hline 5+x
\end{aligned}
\end{aligned}
$$

Substitute with Brackets!!!

M8-10.2-"ax $=b^{" ~ " ~} \frac{x}{a}=b " ~ " \frac{a x}{b}=c$ " Notes \qquad
Solve for x, by dividing to both sides.

$$
\begin{aligned}
2 x & =4 \\
\frac{2 x}{2} & =\frac{4}{2} \\
\frac{2 x}{2} & =\frac{4}{2} \\
& \text { Divide both sides by } 2 \\
x & =\frac{4}{2} \\
x & =2 \\
&
\end{aligned}
$$

Divide both sides by the coefficient on x

Question
Substitute
Left M ust Equal Right
Solve for x, by multiplying to both sides.

$$
\begin{aligned}
& \frac{x}{3}=6 \\
& 3 \times \frac{x}{3}=6 \times 3 \\
& 3 \times \frac{x}{3}=6 \times 3 \\
& x=6 \times 3 \\
& x=18 \\
& \text { Cross it off } \quad \frac{3}{3}=1 \\
& x
\end{aligned}
$$

Check Answer

$$
\begin{aligned}
\frac{x}{3} & =6 \\
\frac{18}{3} & =6 \\
6 & =6
\end{aligned}
$$

Solve for x

$$
\begin{aligned}
\frac{5}{4} x & =10 \\
4 \times \frac{5}{4} x & =10 \times 4 \quad \text { Multiply both sides by } 4 \\
4 \times \frac{5}{4} x & =10 \times 4 \\
5 x & =40 \\
\frac{5 x}{5} & =\frac{40}{5} \quad \text { Divide both sides by } 5 \\
\frac{5 x}{5} & =\frac{40}{5} \\
x & =\frac{40}{5} \\
x & =8
\end{aligned}
$$

Check Answer
$\frac{5}{4} x=10$
$\frac{5}{4}(8)=10$
$10=10$

M8-10.3- " $\frac{a}{x}=b " " \frac{a}{b x}=c$ " Notes
Solve for x

$\frac{8}{x}$	$=4$		
$x \times \frac{8}{x}$	$=4 \times x$	Multiply x to both sides	Multiply both sides by th denominator
$\times \frac{8}{x}$	$=4 \times x$	Cross it off	
$\frac{8}{4}$	$=4 x$		Check Answer $\frac{8}{4}$
2	$=x$	Divide both sides by 4	$\frac{8}{x}$ $\frac{8}{2}=4$ 4

Solve for x

$\frac{24}{2 x}$	$=3$
$2 x \times \frac{24}{2 x}$	$=3 \times 2 x \quad$ Multiply $2 x$ to both sides
24	$=6 x$
$\frac{24}{6}$	$=\frac{d x}{d} \quad$ Divide both sides by 6
4	$=x$

$$
\begin{aligned}
& \text { Short Form } \\
& \begin{aligned}
\frac{24}{2 x} & =3 \\
\frac{24}{2(3)} & =x \\
x & =4
\end{aligned}
\end{aligned}
$$

Check Answer

M8-10.4- $\frac{\text { "ax }}{b x}=\frac{c}{d}$ " Cross Multiply Notes
Solve for x, by multiplying both sides by the opposite denominator.
$\frac{x}{6}=\frac{4}{3}$
$\frac{x}{\sigma}=\frac{4}{3}$
$3 \times x=4 \times 6$
$3 x=24$
$\frac{3 x}{3}=\frac{24}{3}$
$x=8$

Denominators M ultiply to Opposite Side Numerator

Divide both sides by 3

$\frac{x}{6}=\frac{4}{3}$
$\frac{8}{6}=\frac{4}{3}$
$\frac{4}{3}=\frac{4}{3} \checkmark$

Multiply Both Sides

Equivalent Fractions	Algebra	Cross M ultiplication
$\frac{x}{2}=4$	$\frac{x}{2}=4$	$\frac{x}{2}=4$
$\frac{x}{2}=\frac{4}{1}$	$\frac{x}{2}=\frac{4}{1}$	$\stackrel{-x}{2} \times \frac{4}{x}$
$\frac{x}{2}=\frac{4 \times 2}{x} \frac{4}{8}$	$2 \times \frac{x}{2}=\frac{4}{1} \times 2$	$\begin{aligned} 1 \times x & =4 \times 2 \\ 1 x & =8 \\ x & =8 \end{aligned}$
$\frac{\frac{2}{2}=-}{x}$	$\begin{aligned} 2 x \bar{\Sigma} & =-\times 2 \\ x & =4 \times 2 \end{aligned}$	\downarrow
\downarrow	$\frac{x}{x}$	$\frac{x}{2}=\frac{4}{1}$
$\frac{x}{2}=4$	$\begin{aligned} & \downarrow \\ & \frac{x}{2}=4 \times 2 \end{aligned}$	$\begin{gathered} 1 x=4 \times 2 \\ x=8 \end{gathered}$
$\frac{x}{x}=\frac{8}{2}$	${\underset{x}{2}}_{\overline{2}=4 \times 2}$	
$\equiv 8$		

M8-10.5-" $\pm a x+b=c, \frac{x}{a}+b=c "$ Notes

Solve for x

$$
\begin{array}{rlrl}
6 x+8 & =50 & \\
6 x+8 & =50 \\
-8 & & \\
6 x & =42 & & \\
\frac{6 x}{6} & =\frac{42}{6} & & \\
\frac{\phi x}{d} & =\frac{42}{6} & & \text { Subtract } 8 \text { from both side both sides by } 6 \\
x & =\frac{42}{6} & & \\
x & =7 & & \\
& &
\end{array}
$$

Solve for x

$$
\begin{aligned}
\frac{x}{3}-8 & =-3 \\
\frac{x}{3}-\$ & =-3 \quad \text { Add } 8 \text { to both sides } \\
+\oint & +8 \\
\frac{x}{3} & =5 \\
\frac{x}{3} \times 3 & =5 \times 3 \quad \text { Multiply both sides by } 3 \\
x & =5 \times 3 \\
x & =15
\end{aligned}
$$

Check Answer
$\frac{x}{3}-8$ $=-3$ $\frac{15}{3}-8$ $=-3$ $5-8$ $=-3$ -3 $=-3$

Short Form	
$\frac{x}{3}-8$	$=-3$
$\frac{x}{3}$	$=-3+8$
$\frac{x}{3}$	$=5$
x	$=15$

M8-10.6-" $a(x+b)=c, \frac{a}{x+b}=c$ " Distribution Notes

Solve for \boldsymbol{x}, by Distributing a into $\boldsymbol{x}+\boldsymbol{b}$.

Short Forms

$$
\begin{aligned}
-4(x-3) & =-8 \\
x-3 & =2
\end{aligned}
$$

$$
\begin{aligned}
4 x & =20 \\
x & =5
\end{aligned}
$$

$$
-4(x-3)=-8
$$

$$
-4 x+12=-8
$$

$$
\begin{aligned}
-4 x & =-20 \\
x & =5
\end{aligned}
$$

Solve for x, by Distributing a into $x+b$.

$$
\begin{aligned}
& \text { Short Forms } \\
& \begin{aligned}
\frac{1}{2}(x+4) & =6 \\
x+4 & =12 \\
x & =8 \\
\frac{1}{2}(x+4) & =6 \\
\frac{x}{2}+2 & =6 \\
\frac{x}{2} & =4 \\
x & =8
\end{aligned}
\end{aligned}
$$

Solve for x, by multiplying to both sides by $x+b$.

$$
\frac{14}{x-3}=2
$$

$(x-3) \times \frac{14}{x-3}=2 \times(x-3) \quad$ Multiply $x-3$ to both sides

Cross it off

Check Answer	
$\frac{14}{x-3}$	$=2$
$\frac{14}{10-3}$	$=2$
$\frac{14}{7}$	$=2$
2	$=2$

[^1]Distribute

$$
\frac{14}{x-3}=2
$$

M 8-10.7-LCD " $\frac{x}{a}+\frac{b}{c}=\frac{d_{"}}{e}$ Notes

Solve for x by multiplying each term by the LCD

$x-1=\frac{1}{2}$	$L C D=2$	
≤ 1		Check Answer
$2 \times(x-1)=\frac{1}{2} \times 2$	Multiply both sides by 2	1
$2 x-2 x=1$	Distribute	$x-1=\frac{1}{2}$
+2 +2	Add 2 to both sides	$\frac{3}{2}-1$
		$\frac{2}{2}-1=\frac{1}{2}$
$\frac{\pi}{4}=\frac{2}{2}$	Divide both sides by 2	$\frac{3}{2}-\frac{2}{2}=\frac{1}{2}$
		$\begin{array}{llllllllllllllll}2 & 2 & \\ & 1 & 1\end{array}$

OR | Algebra | Add Fractions |
| :---: | :---: |
| $x-1=\frac{1}{2}$ | $\frac{1}{2}+1$ |
| +1 | Expand $1=\frac{1}{1}=\frac{1 \times 2}{1 \times 2}=\frac{2}{2}$ |
| $x=\frac{3}{2}$ | $\frac{1}{2}+\frac{2}{2}$ |
| | $L C D=2$ |

Solve for x by multiplying each term by the LCD

$x-\frac{1}{4}$	$=\frac{1}{2}$		$L C D=4$
$4 \times\left(x-\frac{1}{4}\right)$	$=\frac{1}{2} \times 4$		Multiply both sides by 4
$4 x-\frac{4}{4}$	$=\frac{4}{2}$		Distribute
$4 x-1$	$=2$		Add 1 to both sides
+1	+1		
$4 x$	$=3$		
$\frac{4 x}{4}$	$=\frac{3}{4}$		Divide both sides by 4
x		Check Answer $x-\frac{1}{4}$ $=\frac{1}{2}$ $\frac{3}{4}-\frac{1}{4}$ $=\frac{1}{2}$ $\frac{2}{4}$ $=\frac{1}{2}$ $\frac{1}{2}$ $=\frac{1}{2}$	

Short Form
$x-\frac{1}{4}=\frac{1}{2}$
$\left(x-\frac{1}{4}=\frac{1}{2}\right) \times 4$
$4 x-1=2$
$4 x=3$
$x=\frac{3}{4}$

Solve for x by multiplying each term by the LCD

Short Form
$\left(\frac{x}{2}+\frac{1}{4}=\frac{1}{3}\right) \times 12$
$6 x+3=4$
$6 x=1$
$x=\frac{1}{6}$

M8-10.8-Combining Like Terms Notes

Combine the like terms: Add/Subtract like Terms

$$
x+x=2 x \quad x+2 x=3 x \quad 2 x+4 x=6 x \quad 6 x-4 x=2 x \quad 2 x-5 x=-3 x \quad x-x=0
$$

Solve for x

Solve for x, by combining like terms by adding and subtracting to both sides

$$
\begin{aligned}
& 3 x+2=2 x+6 \\
& 3 x+2=2 x+6 \\
& -2 \quad-2 \\
& 3 x=2 x+4 \\
& -2 x-2 x
\end{aligned} \quad \text { Subtract } 2 \text { from both sides } \begin{gathered}
\text { Subtract } 2 x \text { from both sides } \begin{array}{c}
\text { Check Answer } \\
3 x+2=2 x+6 \\
3(4)+2=2(4)+6 \\
12+2=8+6 \\
14=14
\end{array} \\
\hline x=4
\end{gathered}
$$

Solve for x, by combining like terms

$$
\begin{aligned}
& 3 x-1+4 x=x+11 \\
& 3 x+4 x-1=x+11 \\
& 7 x-1=x+11 \\
& +1 \quad+1 \\
& 7 x=x+12 \\
& -x \quad-x \\
& 6 x=12 \\
& \frac{6 x}{6}=\frac{12}{6} \\
& x=2 \\
& \text { Rearrange Order of Terms (Signs!!!) } \\
& \text { Combine Like Terms }
\end{aligned}
$$

Short Form
$3 x-1+4 x=x+11$
$6 x=12$
$x=2$

M8-10.9-Creating/Solving Equations Notes

Pick a Number.	Word	Meaning
Let $x=$ the number Let Statements	Sum, M ore, Add, Increased	+
	Difference, Less, Subtract, Decreased, Take away	-
	Product, Times, M ultiplied	\times
Expressions	Quotient, Divide, Split	\div

Words Problems
Let Statements
Equation
Isolate
Solve (Algebra)
Answer!
Check Answer!

Three more than a number	Eight less than a number	A number less than four	Five times a number
$x+3$	$x-8$	$4-x$	$5 x$

A third of a number	Eight divided by a number	Twice the sum of a number and three	
$\frac{1}{3} x$	$\frac{8}{x}$	$2(x+3)$	A number plus four "ALL" divided by two $\frac{x+4}{2}$

Create and Solve the following:

Five more than a number is 8 . What is the number?

Let $x=$ the \#	Let Statements
$x+5=8$	Create Equation
$\begin{gathered} x+5=8 \\ -5 \quad-5 \\ x=3 \end{gathered}$	Check Answer Solve $\begin{array}{r} x+5=8 \\ (3)+5=8 \\ 8=8 \end{array}$

Twice the "SUM" of a number and three is 12. What is the number?

$$
\text { Let } x=\text { the number }
$$

$$
\begin{array}{rlrl}
2(x+3) & =12 \\
2(x+3) & =12 \\
2 x+6 & =12 \\
-6 & -6 \\
2 x & =6 \\
\frac{2 x}{2} & =\frac{6}{2} & \begin{aligned}
\text { Check Answer } \\
2(x+3)=12 \\
2((3)+3)=12 \\
2(6)=12
\end{aligned} \\
x & =3 & & \\
& \text { The number is } 3
\end{array}
$$

Three less than twice a number is 7 . What is the number?

Let $x=\#$
$2 x-3=7$

$$
2 x-3=7
$$

$$
+3+3
$$

$$
2 x=10
$$

$$
\frac{2 x}{2}=\frac{10}{2}
$$

Check Answer
$2 x-3=7$
$2(5)-3=7$
$10-3=7$
$7=7$

Five times a number plus three "ALL" divided by two equals triple the number. What is the number?

Let $x=\#$
$\frac{(5 x+3)}{2}=3 x$

M 8-10.9- One vs Two Variable Equations Notes

Create and Solve the following:

One number is two more than another and their sum is 12 . What are the numbers?

One number is two more than another and their sum is 12 . What are the numbers?

$$
\begin{array}{lrl}
\text { Let } x & =1 \text { st } \# \\
\text { Let } y=2 n d \#
\end{array} \quad \text { Two Variable! } \quad \bigcirc R
$$

M 8-10.9-2/3 Number/Consecutive Equations Notes

Create and Solve the following:
The sum of three numbers is 67 . The 2 nd number one less than is twice the 1 st. The 3 rd number is four more than the 1st.

Let $x=1 s t \#$
Let $2 x-1=2 n d \#$
Let $x+4=3 r d \#$
$x+2 x-1+x+4=67$
$x+2 x-1+x+4=67$ $4 x+3=67$ $-3-3$ $4 x=64$ $\frac{4 x}{4}=\frac{64}{4}$

1 st \# = 16
$x=16$

$$
\begin{array}{rlrl}
2 n d \# & =2 x-1 & 3 r d \# & =x+4 \\
& =2(16)-1 & & =(16)+4 \\
& =32-1 & & 3 r d \#=20 \\
2 n d \# & =31 & &
\end{array}
$$

The sum of three consecutive integers is 24 .

Let $x=1 s t \#$
Let $x+1=2 n d \#$
Let $x+2=3 r d \#$
$x+x+1+x+2=24$
$x+x+1+x+2=24$

$$
3 x+3=24
$$

$$
-3 \quad-3
$$

$$
3 x=21
$$

$3 x=21$
$\frac{3 x}{3}=\frac{21}{3}$
$1 s t \#=7$
$x=7$

Consecutive Integers: ie. $-2,-1,0,1,2,3,4,5,6$ Consecutive Even Integers: ie. -2,0,2,4,6
Consecutive Odd Integers: ie. -1,1,3,5,7

$$
\frac{3 x}{3}=\frac{21}{3}
$$

Check Answer $7+8+9=24$

Find three consecutive odd integers where five less than triple the 2nd is quadruple the 1st.
Let $x=1$ st $\#$
Let $x+2=2 n d \#$
Let $x+4=3 r d \#$

M8-10.9-Age/Now-Then Equations Notes

Create and Solve the following:

Four years less than triple M ark's age
equals fourteen years more than double his age. How old is Mark?

Let $m=M a r k ' s$ age

$$
3 m-4=2 m+14
$$

$$
3 m-4=2 m+14
$$

$$
-2 m \quad-2 m
$$

$$
m-4=14
$$

$$
+4+4
$$

Answer $\begin{gathered}m=18 \\ \text { Mark is } 18 \\ \text { years old }\end{gathered} \begin{gathered}\text { Check Answer } \\ 3(18)-4=2(18)+14 \checkmark\end{gathered}$

If Nicole were triple her age she was three years ago she would be twice her current age. How old is Nicole now?

$$
\begin{aligned}
\text { Let } n & =\text { Nicole's age } \\
\text { Let } n-3 & =\text { Nicole's age } 3 \text { years ago } \\
\text { Let } 2 n & =\text { Twice Nicole's age }
\end{aligned}
$$

$$
3(n-3)=2 n
$$

M 8-11.1-Probability Notation/Rules Notes

Probability Notation

Event	Sample Space	Notation
For a coin toss	Heads, Tails	$S=\{H, T\}$
Six-sided die?	$1,2,3,4,5,6$	$S=\{1,2,3,4,5,6\}$

Sample Space:

The set of all possible outcomes.
$\boldsymbol{P}(\boldsymbol{E})$ is the probability of event E taking place.

Probabilities can be expressed: as decimals or fractions between 0 and 1 : as percentages between 0 and 100\%.
$0 \leq P(E) \leq 1$
$0 \% \leq P(E) \leq 100 \%$

If an event can't happen it has a probability of 0 .
The probability of rolling a 7 on a standard six-sided die has a probability of 0 .

If an event will happen with certainty, it has a probability of 1.
The probability of getting a head or a tail when flipping a coin is 1 .
six-sided die has a probability of $0 . \quad P(7)=0$

$P(E) \neq>1$ or 100%
The probability can never be less than 0% or greater than 100%.

If the probability of an event occurring is $P(E)$, then the probability that it DOESN'T occur is:
The probability of NOT rolling a 6 is:

$$
P(\overline{6})=1-P(6)
$$

The sum of probabilities of all outcomes in the sample space must sum to 1 .
When rolling a dice the sample space is $S=\{1,2,3,4,5,6\}$ and the sum of probabilities of all possible outcomes is:

$$
\begin{aligned}
P(1,2,3,4,5 \text { or } 6) & =P(1)+P(2)+P(3)+P(4)+P(5)+P(6) \\
& =\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6} \\
& =\frac{6}{6} \\
P(1,2,3,4,5 \text { or } 6) & =1
\end{aligned}
$$

M 8-11.1-M arbles Probability Notes

You have $\mathbf{3}$ blue marbles and $\mathbf{2}$ red marbles in a bag, a total of 5 marbles.

$$
\text { Probability }=\frac{\text { number of desired outcomes }}{\text { total outcomes }}
$$

If you randomly take a marble out of the bag what is the probability that it will be:
A blue marble?
$P(B)=$?
A red marble? $\quad P(R)=$?

You replace the marble. You now take a another marble out of the bag. Find the probability of:

You now take a blue marble out of the bag.
C B
B
B

Without Replacement w/o rep

What is now the probability that your next drawn marble will be:
A blue marble (given blue)?
A red marble (given blue)?

M8-11.1-Coin Flip Probability Notes

What is the probability of flipping a Head?
$P(H)=\frac{1}{2} \longleftarrow 1$ Head 12 possible outcomes (Heads or Tails)
What is the probability of flipping a Tail?

$$
P(T)=\frac{1}{2} \longleftarrow 1 \text { Tail } 2 \text { possible outcomes (Heads or Tails) }
$$

If you flip a coin 2 times in a row:

Sample Space: $H H, H T, T H, T T$

Sample Space: Possible Outcomes

Two Heads in a row? Two Tails in a row?
$P(H H)=P(H) \cdot P(H) \quad P(T T)=P(T) \cdot P(T)$

$P(H H)$ or $P(2 H)$
Method 1: Multiply
Method 2: Table

Method 3: Tree

A Tail THEN a Head? A Head THEN a Tail?

A Head AND a Tail?	
$\begin{array}{rlr} P(H \cap T) & =P(H T) \\ & =P(H) \times P(7 \\ & =\frac{1}{2} \times \frac{1}{2} \\ & =\frac{1}{4} \end{array}$	$\begin{aligned} & +\quad P(T H) \\ & +P(T) \times P(H) \\ & +\quad \frac{1}{2} \times \frac{1}{2} \\ & +\quad \frac{1}{4} \end{aligned}$
$P(H \cap T)=P(T \cap H)$	
$P(H T \cup T H)=P(H \cap T)$	U: OR

Add Leaves

$P(H \cap T)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
$P(T)=\frac{1}{2} \quad \mathrm{~T}$
$\frac{1}{2} \quad \mathrm{~T} \quad P(T, T)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$

What is the probability of rolling two 6's?
In a row = two separate dice
Method 1: Multiply

Method 2: Table

	1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
Sample Space	2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
	3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
	4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
	5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
	6	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

M 8-11.1-Rolling a Dice and Coin Flip Probability Notes
What is the probability of flipping a Tail with a coin and rolling a 4 with a die?
Method 1: Multiply

Method 2: Table

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{H}	$\mathrm{H}, 1$	$\mathrm{H}, 2$	$\mathrm{H}, 3$	$\mathrm{H}, 4$	$\mathrm{H}, 5$	$\mathrm{H}, 6$
\mathbf{T}	$\mathrm{~T}, 1$	$\mathrm{~T}, 2$	$\mathrm{~T}, 3$	$\mathrm{~T}, 4$	$\mathrm{~T}, 5$	$\mathrm{~T}, 6$
Sample Space						

Method 3: Tree

M 8-11.1 - M ean, M edian, M ode, Range Notes

$$
\begin{aligned}
& \text { Mean }=\frac{\text { All Numbers Added }}{\text { Number of Numbers }} \quad(\text { Average }) \\
& \text { Mean }=\frac{0+1+1+2+2+3+3+3+4+4+10}{11} \\
& \text { Mean }=\frac{33}{11} \\
& \text { Mean }=3
\end{aligned}
$$

No Mode	
$1,3,5,7$	
Median	$=\frac{3+5}{2}$
	$=\frac{8}{2}$
Median	$=4$

M 8-11.1-Odds Probability Notes

You have 3 blue marbles and 2 red marbles in a bag, a total of 5 marbles.

Choose a M arble. What are the odds?

Odds in favour Blue = Odds against Red
3Blue:2Red

$$
\text { Odds Against }=\text { Total }- \text { Odds in favour }
$$

Pick a Card.

	Hearts ${ }^{\text {® }}$	Diamonds *	Spades ${ }^{\text {¢ }}$	Clubs ${ }^{\text {¢ }}$	What are the odds of choosing an Ace?
	Ace ${ }^{\bullet}$	Ace	Ace	Ace 4	
	2	2	2	24	4 Aces : 48 Other Cards
A	3	3	3	3	Odds Against $=$ Total - Odds in favour
M	4	4 *	4	44	
L	5	5	5	54	
E	6	6	6	64	
S	7	7 *	7	7	What are the odds of choosing an Heart?
P	8	8	8	84	
A	9	9	9	94	13 Hearts: 39 Other Cards
E	10	10	10	104	- 52-13
	Jack ${ }^{\text {• }}$	Jack	Jack	Jack	
	Queen *	Queen *	Queen	Queen 4	Odds Against $=$ Total - Odds in favour
	King ${ }^{\text {- }}$	King	King 9	King	r
(4 Suits/ 13 Cards per Suit/ 52 Cards)					

The End

[^0]: If a larger box has 25 marbles in the same ratio as above how many Red marbles are in the box?

[^1]: Short Form
 $\frac{14}{x-3}=2$
 $14=2(x-3)$
 $14=2 x-6$
 $20=2 x$

 $$
 x=10
 $$

