Math 8 Notes

Knack Academics

Nicholas Cragg Knack Publishing <u>www.knackacademics.com</u> nick@knackacademics.com 604.505.2867

M8 - 2.2 - Similar Shapes Notes

$$\frac{6}{3} = \frac{x}{1} \qquad \qquad \frac{BIGGER}{bigger} = \frac{SMALLER}{smaller}$$

$$x = 2$$

M8 Txt Page 4

M8 - 3.2 - Solving Square Roots Prime Factorization Notes

Perfect Square: A number that is the product of the same two factors. $9 = 3 \times 3 = 3^2$

4 is a perfect square because it is a product of the same two factors: 2 and 2.

$$\sqrt{4} = \sqrt{2 \times 2}$$

$$\sqrt{4} = \sqrt{2 \times 2}$$

$$= 2$$
Two identical numbers
under a square root: one
comes out. Nothing is left.

OR
Think about two identical numbers that
multiply together to make that number

36 is a perfect square because it is a product of even pairs of numbers: 3 and 2, and 3 and 2.

 $\sqrt{36} = \sqrt{2 \times 2 \times 3 \times 3}$ $\sqrt{36} = \sqrt{(2 \times 2) \times (3 \times 3)}$ $\sqrt{36} = 2 \times 3$ $\sqrt{36} = 6$ Check on Calculator! $\sqrt{36} = 6$

Two identical pairs of numbers under a square root: one of each comes out. Nothing is left.

 $\sqrt{81} = ?$

81 is a perfect square because it is a product of even pairs of numbers: 3 and 3, and 3 and 3.

$$\sqrt{81} = \sqrt{3 \times 3 \times 3 \times 3}$$

$$\sqrt{81} = \sqrt{(3 \times 3) \times (3 \times 3)}$$

$$\sqrt{81} = 3 \times 3$$

$$\sqrt{81} = 9$$

$$\sqrt{81} = 9$$
Check on Calculator
$$\sqrt{81} = 9$$

$$\sqrt{81} = 9$$
Check on Calculator
$$\sqrt{81} = 9$$

Two identical pairs of numbers under a square root: one of each comes out. Nothing is left.

Check on
Calculator!
$$\sqrt{81} = 9$$

Notice: when solving square roots using prime factorization either circle a pair of two identical numbers or multiple pairs of identical numbers.

M8 - 3.2 - Solving Cube Roots Prime Factorization Notes

Perfect Cube: a number that is a product of the same three factors. $8 = 2 \times 2 \times 2 = 2^3$

Notice: when solving cube roots using prime factorization either circle a triplet of three identical numbers or multiple triplets of identical numbers.

M8 - 3.3 - Identifying "a, b, c" Notes

M8 - 3.3 - Pythagoras' Theorem Notes

 $b = \sqrt{c^2 - a^2}$

M8 - 4.1 - Converting Fractions, Decimals & % Notes

M8 - 5.1 - Net Surface Area Notes

M8 - 5.3 - Cylinder/Triangular Prism Surface Area Notes

Notice: the width of the rectangle is the circumference of the circle.

Notice: the front and back are the same, and sides are the same.

M8 - 5.4 - Surface Area Missing Dimension Notes

Find the missing dimension of the following shapes.

M8 - 7.1 - Quadrilateral Volume Notes

Volume: equal to the area of the base time height: " $V = (area \ of \ base) \times (height)$ ". The base must be the same as the top.

Notice: the formula for the volume of a cube and a rectangular prism is just: V = lwh.

M8 - 7.2 - Cylinder/Triangular Prism Volume Notes

Volume: equal to the area of the base times the height: " $V = (area \ of \ base) \times (height)$ ". The base must be the same as the top.

Volume

Triangular Prism

Volume

Notice: the volume is calculated by finding the area of the base of the triangular prism using the height of the triangle, *h*, multiplied by the height of the prism, *H*.

M8 - 7.3 - Rectangular Prism Missing Length Notes

Find the missing length for the shapes below.

$$V = \pi r^{2}h$$

$$402.12 = \pi (4)^{2}h$$

$$402.12 = 50.27h$$

$$\frac{402.12}{50.27} = \frac{50.27h}{50.27}$$

$$8 = h$$

$$h = 8ft$$

M8 - 6.0 - LCM GCF Notes

Lowest common multiple (LCM): the lowest number both numbers go into Greatest common factor (GCF): the biggest number that goes into two numbers

8 and 12?

M8 - 6.1 - Simplifying Expanding Fractions Notes

Simplification

Rule: Do to the top as you did to the bottom.

Expansion

M8 - 6.2 - Multiplying/Cross Cancelling/Dividing Fractions Notes

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

To multiply fractions just multiply tops and multiply bottoms.

$$2 \times \frac{3}{5} = \frac{2}{1} \times \frac{3}{5} \underbrace{\binom{6}{5}}_{5}$$

$$a \times \frac{b}{c} = \frac{a}{1} \times \frac{b}{c} = \frac{ab}{c}$$

Cross Cancelling

Cross a 2 off from the top and bottom

$$\frac{1}{2} \div \frac{4}{7} =$$

$$\frac{1}{2} \times \frac{7}{4} =$$
Flip second fraction, change to multiplication.
$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

$$\frac{1 \times 7}{2 \times 4} \begin{pmatrix} 7\\ 8 \end{pmatrix}$$
To divide fractions just flip the second fraction, and change divided by to multiplication and follow steps above.
$$\frac{\left(\frac{1}{2}\right)}{\left(\frac{4}{7}\right)} = \frac{1}{2} \div \frac{4}{7} = \frac{1}{2} \times \frac{7}{4} \begin{pmatrix} 7\\ 8 \end{pmatrix}$$

$$\frac{\frac{a}{5}}{\frac{5}{7}} = 3 \div \frac{5}{7} = \frac{3}{1} \times \frac{7}{5} = \begin{pmatrix} 21\\ 5 \end{pmatrix}$$

$$\frac{\frac{a}{5}}{\frac{c}{5}} = \frac{a}{5} \div \frac{c}{6} = \frac{a}{b} \times \frac{d}{c} = \frac{ac}{bc}$$

$$\frac{\frac{a}{b}}{\frac{b}{c}} = a \div \frac{b}{c} = a \times \frac{c}{b} = \frac{ac}{b}$$

$$\frac{\frac{a}{b}}{\frac{c}{c}} = \frac{a}{b} \div c = \frac{a}{b} \times \frac{1}{c} = \frac{a}{bc}$$

$$\frac{\frac{a}{b}}{\frac{b}{c}} = \frac{a}{b} \div c = \frac{a}{b} \times \frac{1}{c} = \frac{a}{bc}$$

M8 - 6.3 - Mixed Numbers Improper Fractions Notes

M8 - 6.4 - Adding Subtracting Fractions Notes

Steps: Get the same bottom (LCD), do to top, do to bottom, add or subtract tops. Lowest common denominator (LCD): the lowest common multiple of the denominators

M8 - 8.1 - Adding/Subtracting Number Line Notes

by-side it becomes a positive sign.

If you have two different signs side-by-side it becomes negative

After that use the number line!
$$*-2-2 \neq 4 = -4$$

M8 - 8.2 - \times ÷ Same Plus, Different Minus Notes

If you multiply or divide numbers with two of the same sign we follow the rule "Same Plus."

If you multiply or divide numbers with two different signs we follow the rule "Different Minus."

Don't forget about signs side-by-side!

M8 - 8.3 - BEDMAS: Order of Operations Notes

B - brackets	Brackets first			
E - exponents	Exponents second			
D - division	Division			
M - multiplication	Multiplication			
A - addition	Addition	7 In order from left to right		
S - subtraction	Subtraction			

 $3 \times 4 + 2 =$ Multiply first 12 + 2 = 14Add second $10 - 4 \div 2 =$ Divide first Multiply the number on 10 - 2 = 8Subtract second the base the number of times of the exponent K Exponent $2^3 + 4 =$ **Exponents** first $2^3 = 2 \times 2 \times 2 = 8$ + 4 = Addition second **K**Base 8 + 4 = 12 Check on Calculator! $2(3 + 4)^2 =$ Brackets first $2(7)^2 =$ 2012 Exponents second $7^2 = 7 \times 7 = 49$ Multiply third 2(49) = 982 - 3 + 4 =Subtraction First -1 + 4 = 3Addition Second

Do side work Off to the Right

M8 - 9.1 - Plotting Points Graph Notes

(x, y) A point on a graph is given by an "ordered pair"

Plot the following table of values:

Steps to plot a point:

- 1. Find the *x* location on the *x*-axis. (The number in the left of the brackets.)
- 2. Go straight up or down to the *y* value. (The number on the right of the brackets).
- 3. Draw and label the point.

M9 - 9.2 - Graphing TOV: y = x, y = x + 1 Notes

-1

0

1

2

)R

y = x + 1

y = -1

2.-

y = (-2) + 1

0

1

2

3

Do it in your head!

y = x + 1

y = 0

(-1,0)

y = (-1) + 1

(-1,0)

(0,1)

(1,2)

(2,3)

1)

1,0)

-2

-3 -3

Notice: the graph

of y = x + 1 is

(Or Left One*)

the graph of y = x, moved up 1.

-1)

y = x + 1

v = 2

(1,2)

y = (1) + 1

y = x + 1

y = 1

(0,1)

y = (0) + 1

M8 Txt Page 29

M8 - 10.0 - Golden Rule Scale Picture Notes

1 = 1kg

The Golden Rule: Whatever you do to the right side of the equal sign, do to the left side.

What plus 1 = 4? 1 1 1 1 х 1 x + 1 = 4-1 - 1 x = 34 kg 4 kg x + 1 = 4Take off one from both sides 1 1 1 х 3 kg 3 *kg* x = 3What times 2 = 8? х 1 1 1 1 1 1 1 1 x 8 2x= -7 x =8 kg 8 kg 2x = 8Divide both sides by two x 1 1 1 1

M8 Txt Page 30

x = 4

4 *kg*

4 *kg*

M8 - 10.1 - " $\pm x \pm a = b$ " AlgebranNotes

Substitute with Brackets!!!

M8 - 10.2 - "
$$ax = b$$
" " $\frac{x}{a} = b$ " " $\frac{ax}{b} = c$ " Notes
Solve for x, by dividing to both sides.
 $2x = 4$
 $\frac{2x}{2} = \frac{4}{2}$ Divide both sides by 2
 $\frac{4x}{4} = \frac{4}{2}$ Cross it off $\frac{2}{2} = 1$
Divide both sides by 2
 $x = 2$
Divide both sides by 3
 $\frac{x}{3} = 6$
 $3 \times \frac{x}{3} = 6 \times 3$ Cross it off $\frac{3}{2} = 1$
 $x = \frac{3}{2} = \frac{1}{2}$
Check Answer
 $\frac{x}{3} = 6$
 $3 \times \frac{x}{3} = 6 \times 3$ Cross it off $\frac{3}{2} = 1$
 $\frac{x}{3} = 6$
 $\frac{18}{3} = 6$
Solve for x
 $\frac{5}{4}x = 10$
 $4 \times \frac{5}{4}x = 10 \times 4$
 $5x = 40$
 $\frac{5x}{5} = \frac{40}{5}$
Divide both sides by 5
 $\frac{5x}{4} = \frac{40}{5}$
 $x =$

 $x = \frac{40}{5}$

x = 8

M8 - 10.3 - "
$$\frac{a}{x} = b$$
"" $\frac{a}{bx} = c$ " Notes

Solve for *x*

$$\frac{8}{x} = 4$$

$$x \times \frac{8}{x} = 4 \times x$$

$$x \times \frac{8}{x} = 4 \times x$$

Cross it off

$$8 = 4x$$
$$\frac{8}{4} = \frac{4x}{4}$$
$$2 = x$$

Short Form

$$\frac{\frac{8}{x}}{\frac{8}{4}} = x$$

$$x = 2$$

Short Form

$$\frac{24}{2x} = 3$$

$$\frac{24}{2(3)} = x$$

$$x = 4$$

Solve for *x*

 $\frac{24}{2x} = 3$ $2x \times \frac{24}{2x} = 3 \times 2x$ 24 = 6x $\frac{24}{6} = \frac{6x}{4}$ 4 = x

Multiply 2x to both sides

Divide both sides by 6

Check Answer

$$\frac{24}{2x} = 3$$

$$\frac{24}{2(4)} = 3$$

$$\frac{24}{8} = 3$$

$$3 = 3$$

M8 - 10.4 - " $\frac{ax}{bx} = \frac{c}{d}$ " Cross Multiply Notes

Solve for x, by multiplying both sides by the opposite denominator.

M8 - 10.5 - "
$$\pm ax + b = c, \frac{x}{a} + b = c$$
" Notes

Solve for x

$$6x + 8 = 50$$

$$6x + 8 = 50$$

$$-8$$
Subtract 8 from both sides

$$6x = 42$$

$$\frac{6x}{6} = \frac{42}{6}$$
Divide both sides by 6

$$\frac{6x}{6} = \frac{42}{6}$$
Cross it off

$$x = \frac{42}{6}$$

Short Form

$$6x + 8 = 50$$

$$6x = 50 - 8$$

$$6x = 42$$

$$x = 7$$

Solve for x

M8 - 10.6 - "
$$a(x + b) = c_{,\frac{a}{x+b}} = c$$
" Distribution Notes

Solve for x, by Distributing a into x + b. -4(x-3) = -8OR $\widehat{-4(x-3)} = -8$ Distribute Distribution -4x + 12 = -8-4(x-3) = -4x + 12-4x + 12 = -8-12 - 12Multiply the number in front of the brackets into both -4x = -20numbers inside the brackets. $\frac{-4x}{-4} = \frac{-20}{-4}$ **Check Answer** -4(x-3) = -8-4(5-3) = -8 -4(2) = -8 -8 = -8 $x = \frac{-20}{-4}$ x = 5

Divide 1st

$$-4(x-3) = -8$$

 $4(x-3) = -8$
 $4(x-3) = -8$
 $x-3 = 2$
 $x-3 = 2$
 $x-3 = 2$
 $x-3 = 2$
 $4x = 20$
 $x = 5$
 $-4(x-3) = -8$
 $4x = 20$
 $x = 5$
 $-4(x-3) = -8$
 $-4(x-3) = -8$

Solve for x, by Distributing a into x + b.

Solve for x, by multiplying to both sides by x + b.

$$\frac{14}{x-3} = 2$$

$$(x-3) \times \frac{14}{x-3} = 2 \times (x-3)$$

$$(x-3) \times \frac{14}{x-3} = 2 \times (x-3)$$

$$14 = 2x - 6$$

$$+6 + 6$$

$$20 = 2x$$

$$\frac{20}{2} = \frac{2x}{x}$$

$$10 = x$$

$$x = 10$$

Multiply x - 3 to both sides

Cross it off

Distribute

Check Answer $\frac{\frac{14}{x-3}}{\frac{14}{10-3}} = 2$ $\frac{\frac{14}{7}}{\frac{14}{7}} = 2$ 2 = 2

Short Form

$$\frac{14}{x-3} = 2$$

 $14 = 2(x-3)$
 $14 = 2x - 6$
 $20 = 2x$
 $x = 10$

Short Forms

x + 4 = 12 x = 8

M8 - 10.7 - LCD "
$$\frac{x}{a} + \frac{b}{c} = \frac{d}{e}$$
" Notes

Solve for x by multiplying each term by the LCD

Solve for x by multiplying each term by the LCD

M8 - 10.8 - Combining Like Terms Notes

Combine the like terms: Add/Subtract like Terms

$$x + x = 2x$$
 $x + 2x = 3x$ $2x + 4x = 6x$ $6x - 4x = 2x$ $2x - 5x = -3x$ $x - x = 0$

Solve for *x*

$$\begin{array}{c} x = 1 + 2 \\ x = 3 \end{array} \begin{array}{c} \text{Combine} \\ \text{Like} \\ \text{Terms} \end{array} \begin{array}{c} x + x = 4 \\ 2x = 4 \\ x = 2 \end{array} \begin{array}{c} \text{Check Answer} \\ x + x = 4 \\ 2 + 2 = 4 \\ 4 = 4 \end{array} \begin{array}{c} 3x + 3x = 4 + 8 \\ 6x = 12 \\ 6x = \frac{12}{6} \end{array} \begin{array}{c} \text{Check Answer} \\ 3x + 3x = 4 + 8 \\ 3(2) + 3(2) = 4 + 8 \\ 6 + 6 = 12 \\ 12 = 12 \end{array} \end{array}$$

Solve for x_i by combining like terms by adding and subtracting to both sides

$$3x + 2 = 2x + 6$$

$$-2 - 2$$

$$3x = 2x + 4$$

$$-2x - 2x$$
Subtract 2x from both sides

$$x = 4$$
Subtract 2x from both sides

Solve for x, by combining like terms

$$3x - 1 + 4x = x + 11$$

$$3x + 4x - 1 = x + 11$$

$$7x - 1 = x + 11$$

$$7x - 1 = x + 11$$

$$7x = x + 12$$

$$-x - x$$

$$6x = 12$$

$$\frac{6x}{6} = \frac{12}{6}$$

$$x = 2$$

$$3x - 1 + 4x = x + 11$$

$$3(2) - 1 + 4(2) = (2) + 11$$

$$6 - 1 + 8 = 2 + 11$$

$$13 = 13$$

Short Form

$$3x - 1 + 4x = x + 11$$

 $6x = 12$
 $x = 2$

x = 4

M8 - 10.9 - Creating/Solving Equations Notes

Pick a Number.		Word			Meaning	Words Problems			
Let $x = th$	x = the number Let Statements		Sum, More, Add, Increased			+	Let Statements		
			Difference, Less, Subtract, Decreased, Take away			_	Equation Isolate Solve (Algebra) Answer! Check Answer!		
			Product, Times, Multiplied			×			
Expressions		Quotient, Divide, Split			÷				
Three more than a number	Eight less than a number r = 8	A number less than four	nber Five times nan a number 5x		A third of a number 1	Eight divided by a number	Twice the sum of a number and three 2(x + 3)		A number plus four "ALL" divided by two x + 4
x + 5	$\lambda = 0$	4 - x			$\frac{1}{3}x$	$\frac{1}{x}$			2

Create and Solve the following:

Five more than a number is 8. What is the number?

Twice the "SUM" of a number and three is 12. What is the number?

Let x = the number

$$2(x + 3) = 12$$

$$2(x + 3) = 12$$

$$2x + 6 = 12$$

$$-6 - 6$$

$$2x = 6$$

$$\frac{2x}{2} = \frac{6}{2}$$
Check Answer
$$2(x + 3) = 12$$

$$2((3) + 3) = 12$$

$$2(6) = 12 \checkmark$$
(x = 3)
The number is 3

Five times a number plus three "ALL" divided by two equals triple the number. What is the number?

Let
$$x = \#$$

 $2x - 3 = 7$
 $2x - 3 = 7$
 $+3 + 3$
 $2x = 10$
 $\frac{2x}{2} = \frac{10}{2}$
Check Answer
 $2x - 3 = 7$
 $2(5) - 3 = 7$
 $10 - 3 = 7$
 $7 = 7$

Three less than twice a number is 7.

What is the number?

Let
$$x = #$$

$$\frac{(5x + 3)}{2} = 3x$$

$$\frac{5x + 3}{2} = 3x \times 2$$

$$\frac{5x + 3}{5x + 3} = 6x$$

$$-5x - 5x$$

x = 3

The number is 3

Check Answer

$$\frac{5x + 3}{2} = 3x$$

$$\frac{5(3) + 3}{2} = 3(3)$$

$$\frac{18}{2} = 9$$

$$9 = 9 \checkmark$$

M8 - 10.9 - One vs Two Variable Equations Notes

Create and Solve the following:

One number is two more than another and their sum is 12. What are the numbers?

One number is two more than another and their sum is 12. What are the numbers?

M8 - 10.9 - 2/3 Number/Consecutive Equations Notes

Create and Solve the following:

The sum of three numbers is 67. The 2nd number one less than is twice the 1st. The 3rd number is four more than the 1st.

Let
$$x = 1st \#$$

Let $2x - 1 = 2nd \#$
Let $x + 4 = 3rd \#$
 $x + 2x - 1 + x + 4 = 67$
 $x + 2x - 1 + x + 4 = 67$
 $-3 - 3$
 $4x = 64$
 $\frac{4x}{4} = \frac{64}{4}$
Ist $\# = 16$
 $1st \# = 16$
 $16 + 31 + 20 = 67$
Check Answer
 $16 + 31 + 20 = 67$
 $16 + 31 + 20 = 67$
Check Answer
 $16 + 31 + 20 = 67$
 $16 + 31 + 20 = 67$
Consecutive Integers: ie. -2, -1, 0, 1, 2, 3, 4, 5, 6
Consecutive Integers: ie. -2, -1, 0, 1, 2, 3, 4, 5, 6
Consecutive Integers: ie. -2, -1, 0, 1, 2, 3, 4, 5, 6
Consecutive Even Integers: ie. -2, -1, 0, 1, 2, 3, 4, 5, 6
Consecutive Odd Integers: ie. -2, 0, 2, 4, 6
Consecutive Odd Integers: ie. -1, 1, 3, 5, 7
Let $x + 1 + x + 2 = 24$
 $x + x + 1 + x + 2 = 24$
 $3x + 3 = 24$
 $-3 - 3$
 $3x = 21$
 $\frac{3x}{3} = \frac{21}{3}$
 $1st \# = 7$
 $1st \# = 7$
 $1st \# = 7$
 $x = 7$

Find three consecutive odd integers where five less than triple the 2nd is quadruple the 1st.

Let $x = 1$ st # Let $x + 2 = 2nd$ # Let $x + 4 = 3rd$ #		
3(x+2)-5=4x	2nd# = x + 2 $3rd# == (1) + 2 =$	x + 5 (1) + 4
3(x + 2) - 5 = 4x 3x + 6 - 5 = 4x 3r + 1 = 4r	2nd# = 3 (3rd# =	5
-3x - 3x $1 = x$	1st # = 1 2nd $\# = 3$	Check Answer $3(3) - 5 = 4(1)$
1st # = 1 (x = 1)	3rd# = 5	$9-5=4$ $4=4\checkmark$

M8 - 10.9 - Age/Now-Then Equations Notes

Create and Solve the following:

Four years less than triple Mark's age equals fourteen years more than double his age. How old is Mark?

If Nicole were triple her age she was three years ago she would be twice her current age. How old is Nicole now?

Let n = Nicole's age Let n - 3 = Nicole's age 3 years ago Let 2n = Twice Nicole's age

3(n-3) = 2n

$$3(n-3) = 2n$$

$$3n-9 = 2n$$

$$-3n - 3n$$

$$-9 = -n$$

$$\frac{-9}{-1} = \frac{-n}{-1}$$

$$9 = n$$
Answer
$$n = 9$$
Nicole is 9 years old now

M8 - 11.1 - Probability Notation/Rules Notes

Probability Notation

Event	Sample Space	Notation		
For a coin toss	Heads, Tails	$S = \{H, T\}$		
Six-sided die?	1, 2, 3, 4, 5, 6	$S = \{1, 2, 3, 4, 5, 6\}$		

Sample Space: The set of all possible outcomes.

$$P(E)$$
 is the probability of event E taking place. $P(H) = \frac{1}{2} = 0.5 = 50\%$ $P(1) = \frac{1}{6} = 0.1\overline{6} = 16.67\%$ Probabilities can be expressed: as decimals or fractions between 0 and 1 $0 \le P(E) \le 1$
 $0\% \le P(E) \le 100\%$ If an event can't happen it has a probability of 0. $P(E) \ne 1 \text{ or } 100\%$ The probability of rolling a 7 on a standard
six-sided die has a probability of 0. $P(T) = 0$ If an event will happen with certainty, it has a probability of 1.If an event will happen with certainty, it has a probability of 1.

The probability of getting a head or a tail when flipping a coin is 1.

If the probability of an event occurring is P(E), then the probability that it DOESN'T occur is:

 $P(H \cup T) = 1$

 $\cup: OR$

The sum of probabilities of all outcomes in the sample space must sum to 1.

When rolling a dice the sample space is $S = \{1, 2, 3, 4, 5, 6\}$ and the sum of probabilities of all possible outcomes is:

$$P(1,2,3,4,5 \text{ or } 6) = P(1) + P(2) + P(3) + P(4) + P(5) + P(6)$$

= $\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$
= $\frac{6}{6}$
$$P(1,2,3,4,5 \text{ or } 6) = 1$$

M8 - 11.1 - Marbles Probability Notes

You have 3 blue marbles and 2 red marbles in a bag, a total of 5 marbles.

$$P(B|B) = 0.6$$

$$P(R|B) = 0.4$$

$$P(R|B) = P(R)$$
Probability does not depend
$$P(R|B) = p(R)$$

M8 - 11.1 - Coin Flip Probability Notes

What is the probability of flipping a Head?

M8 Txt Page 46

M8 - 11.1 - Rolling a Dice and Coin Flip Probability Notes What is the probability of flipping a Tail with a coin and rolling a 4 with a die?

M8 - 11.1 - Mean, Median, Mode, Range Notes

M8 - 11.1 - Odds Probability Notes

You have 3 blue marbles and 2 red marbles in a bag, a total of 5 marbles.

Odds: Odds in Favor : Odds Against

Choose a Marble. What are the odds?

Pick a Card.

	Hearts 🛡	Diamonds 🔶	Spades 🕈	Clubs 🕈	
	Ace 🛡	Ace 🔶	Ace 🕈	Ace 🕈	
S A M	2 🛡	2 ♦	2 🕈	2 🕈	
	3 🛡	3 🔶	3 🛧	3 🕈	
	4 🎔	4 🔶	4 🔶	4 ♠ 5 ♠	
L	5 💙	5 ♦	5 🕈		
E	6 🎔	6 🔶	6 🕈	6 🕈	
s	7 🎔	7 ♦	7 🔶	7 🕈	
P A C	8 🛡	8 🔶	8 🕈	8 🕈	
	9 🎔	9 ♦	9 🛧	9 🕈	
E	10 🛡	10 🔶	10 🜩	10 🕈	
	Jack 🛡	Jack 🔶	Jack 🕈	Jack 🕈	
	Queen 🛡	Queen 🔶	Queen 🔶	Queen 🕈	
	King 🛡	King 🔶	King 🕈	King 🕈	

(4 Suits/13 Cards per Suit/52 Cards)

What are the odds of choosing an Ace?

4 Aces : 48 Other Cards

Odds Against = Total - Odds in favour

What are the odds of choosing an Heart?

13 Hearts: 39 Other Cards

Odds Against = Total - Odds in favour

The End

