M8-3.2 - Solving Square Roots Prime Factorization Notes

Perfect Square: A number that is the product of the same two factors. $9=3 \times 3=3^{2}$

$$
\sqrt{4}=?
$$

4 is a perfect square because it is a product of the same two factors: 2 and 2.

$$
\begin{aligned}
\sqrt{4} & =\sqrt{2 \times 2} & & \text { Two identical numbers } \\
\sqrt{4} & =\sqrt{2 \times 2} & & \text { under a square root: one } \\
& =(2) & & \text { comes out. Nothing is left. }
\end{aligned}
$$

Think about two identical numbers that multiply together to make that number

36 is a perfect square because it is a product of even pairs of numbers: 3 and 2 , and 3 and 2 .
$\sqrt{36}=\sqrt{2 \times 2 \times 3 \times 3}$
$\sqrt{36}=\sqrt{(2 \times 2) \times 3 \times 3)}$
$\sqrt{36}=2 \times 3$

$\sqrt{36}=6$| Check on |
| :--- |
| Calculator! |
| $\sqrt{36}=6$ |

$$
\sqrt{36}=6
$$

Two identical pairs of numbers under a square
root: one of each comes numbers under a square
root: one of each comes out. Nothing is left.

81 is a perfect square because it is a product of even pairs of numbers: 3 and 3 , and 3 and 3 .

$$
\begin{aligned}
& \sqrt{81}=\sqrt{3 \times 3 \times 3 \times 3} \\
& \sqrt{81}=\sqrt{(3 \times 3) \times(3 \times 3)} \\
& \sqrt{81}=3 \times 3 \\
& \sqrt{81}=(9)
\end{aligned}
$$

Two identical pairs of numbers under a square root: one of each comes out. Nothing is left.

$$
\sqrt{36}=?
$$

$\sqrt{81}=$?

$$
\begin{aligned}
\sqrt{81} & =\sqrt{9 \times 9} \\
& =9
\end{aligned}
$$

[^0]
M8-3.2 - Solving Cube Roots Prime Factorization Notes

Perfect Cube: a number that is a product of the same three factors. $8=2 \times 2 \times 2=2^{3}$

$\sqrt[3]{27}=$?

27 is a perfect cube because it is the product of three identical factors:

OR
Think about three identical numbers that multiply together to make that number

$$
\sqrt[3]{64}=?
$$

OR

$$
\begin{aligned}
\sqrt[3]{64} & =\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2} \\
\sqrt[3]{64} & =\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2} \\
& =2 \times 2 \\
& =4
\end{aligned}
$$

Three identical numbers under a square root: one of each comes out. Nothing is left.

Notice: when solving cube roots using prime factorization either circle a triplet of three identical numbers or multiple triplets of identical numbers.

[^0]: Notice: when solving square roots using prime factorization either circle a pair of two identical numbers or multiple pairs of identical numbers.

