M8-3.3 - Identifying "a, b, c" Notes

Identifying a, b, and c .
a

Identifying a, b, and c.

3

4

$$
\begin{gathered}
a=3 \\
b=4 \\
c=5
\end{gathered}
$$

b

8

$$
\begin{aligned}
& a=8 \\
& b=6 \\
& c=10
\end{aligned}
$$

M8-3.3-Pythagoras' Theorem Notes

Solve for "c".

4

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
3^{2}+4^{2}=c^{2} \\
9+16=c^{2} \\
25=c^{2} \\
\sqrt{25}=\sqrt{c^{2}} \\
5=c
\end{gathered}
$$

Remember:

The Area of the two small squares adds to the area of the large square.
$c=\sqrt{a^{2}+b^{2}}$

Solve for "a" or "b".
6

b

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
6^{2}+b^{2} & =10^{2} \\
36+b^{2} & =100 \\
-36 & -36 \\
b^{2} & =64 \\
\sqrt{b^{2}} & =\sqrt{64} \\
b & =8
\end{aligned}
$$

Remember:
Bigger square minus
smaller square equals other
smaller square.
$c^{2}-a^{2}=b^{2}$
$10^{2}-6^{2}=b^{2}$
$100-36=b^{2}$
$64=b^{2}$
$\sqrt{64}=\sqrt{b^{2}}$
$b=8$
$b=\sqrt{c^{2}-a^{2}}$

