M8-7.1-Quadrilateral Volume Notes

Volume: equal to the area of the base time height: "V = (area of base) \times (height)".
The base must be the same as the top.

Cube

3 cm

Volume

$$
V=(\text { area of base }) \times(\text { height })
$$

$$
V=(l \times w) \times(h)
$$

$$
V=l w h
$$

$$
V=l w h
$$

$$
V=3 \times 3 \times 3
$$

If Area of Base Given

$V=($ area of base $) \times($ height $)$
$V=(9) \times(3)$
$V=27 \mathrm{~cm}^{3}$

Rectangular Prism

4 cm

Volume

$$
\begin{aligned}
V & =(\text { area of base }) \times(\text { height }) \\
V & =(l \times w) \times(h) \\
V & =l w h \\
V & =l w h \\
V & =4 \times 2 \times 3 \\
V & =24 \mathrm{~cm}^{3}
\end{aligned}
$$

Notice: the formula for the volume of a cube and a rectangular prism is just: $V=l w h$.

M8-7.2-Cylinder/Triangular Prism Volume Notes

Volume: equal to the area of the base times the height: "V = (area of base) \times (height)". The base must be the same as the top.

Cylinder

Volume
$V=($ area of base $) \times($ height $)$
$V=\left(\pi r^{2}\right) \times(h)$
$V=\pi r^{2} h$
$V=\pi r^{2} h$
$V=(3.14)(3)^{2}(8)$

Triangular Prism

$$
\begin{aligned}
V & =(\text { area of base }) \times(\text { height }) \\
V & =\left(\frac{b \times h}{2}\right) \times(H) \\
V & =\frac{b h}{2} \times H
\end{aligned}
$$

$$
\begin{aligned}
& V=\frac{b h}{2} \times H \\
& V=\frac{(8)(3)}{2} \times(10) \\
& V=120 \mathrm{~cm}^{3}
\end{aligned}
$$

Notice: the volume is calculated by finding the area of the base of the triangular prism using the height of the triangle, h, multiplied by the height of the prism, H.

M8-7.3-Rectangular Prism Missing Length Notes

Find the missing length for the shapes below.

w

h

$$
\begin{aligned}
V & =\pi r^{2} h \\
402.12 & =\pi(4)^{2} h \\
402.12 & =50.27 h \\
\frac{402.12}{50.27} & =\frac{50.27 h}{50.27} \\
8 & =h \\
h & =8 f t
\end{aligned}
$$

