M8 - 9.1 - Plotting Points Graph Notes

(x, y) A point on a graph is given by an "ordered pair"

 $\begin{array}{ccc}
x & y \\
\downarrow & \downarrow \\
(3,4) & (x,y)
\end{array}$

Plot the following table of values:

y	Ordered Pairs
-3	(2, -3)
-1	(-4, -1)
5	(-3,5)
0	(0,0)
0	(4,0)
-3	(0, -3)
	-3 -1 5 0

Steps to plot a point:

- 1. Find the x location on the x-axis. (The number in the left of the brackets.)
- 2. Go straight up or down to the *y* value. (The number on the right of the brackets).
- 3. Draw and label the point.

M9 - 9.2 - Graphing TOV: y = x, y = x + 1 Notes

Graph: y = x

Start with an empty Table of **Values**

		y	=x
x	y	x	y
-2		-2	-2
-1		-1	-1
0		0	0
1		1	1
2		2	2

Ordered Pairs

y = x

Choose Logical x Values

y	=	x	
y	=	(-	-2)

$$y = x$$
$$y = (-1)$$

$$y = x$$
$$y = (0)$$

$$y = x$$
$$y = (1)$$

$$y = x$$
$$y = (2)$$

Write the Formula

Brackets)

(-2, -2)

$$(-1,-1)$$

(0,0)

(1,1)

(2,2)

Substitute (x) values in the Formula Put the y value into the Table Write the Point (x, y)Graph and Label the Points (x, y)Draw and Label the Line

(2,2)

1,1)

000

1,-1)

2,-2)

(with Arrow Tips)

Graph: y = x + 1

y = x + 1

		Ordered
x	y	Pairs
-2	-1	(-2, -1)
-1	0	(-1,0)
0	1	(0,1)
1	2	(1,2)
2	3	(2,3)

Do it in your head!

y = x + 1y = (-2) + 1y = -1

y = x + 1y = (-1) + 1 $\nu = 0$

(-1,0)

y = x + 1y = (0) + 1y = 1

(0,1)

y = x + 1y = (1) + 1y = 2

(1,2)

Notice: the graph of y = x + 1 is the graph of y =x, moved up 1. (Or Left One*)

M9 - 9.2 - Graphing TOV: y=2x, y = 2x + 1 Notes

Graph: y = 2x

y = 2x		
X	у	
-2	-4	
-1	-2	
0	0	
1	2	
2	4	

Ordered Pairs

(-2, -4)

(-1, -2)

(0,0)

(1,2)

(2,4)

y = 2xy = 2(-2)y = -4

y = 2xy = 2(-1)y = -2

y = 2xy = 2(0)y = 0

y = 2xy = 2(1)

y = 2

(-2, -4)

(-1, -2)

(0,0)

(1,2)

Notice: the graph of y = 2x is twice as steep as the graph of y = x.

y = 2x + 1

Graph: y = 2x + 1

\boldsymbol{x} y -2-3-1-10 1 3 1 2 5

Ordered Pairs

(-2, -3)

(-1, -1)

(0,1)

(1,3)

(2,5)

y = 2x + 1y = 2(-2) + 1

y = 2(-1) + 1y = -4 + 1

y = -2 + 1y = -1

y = 2x + 1

y = 2x + 1y = 2(0) + 1y = 0 + 1

y = 1

(-2, -3)

y = -3

(-1, -1)

(0,1)

Notice: the graph of y = 2x + 1 is the graph of y =2*x* up 1.