#### M9 - 1.1 - Draw Lines of Symmetry HW

Draw lines of symmetry and label type H/V/O.



#### M9 - 1.1 - Draw Lines of Symmetry HW

Draw lines of symmetry and label type H/V/O.



#### M9 - 1.1 - Draw Lines of Symmetry HW

Draw lines of symmetry and label type H/V/O.



#### M9 - 1.1 - Rotational Symmetry/Angle of Rotation HW

#### What is the order of and angle of rotation of the following?



| M9 -        | 2.1 - Roun           | ding HMK       |         |        |       |       |
|-------------|----------------------|----------------|---------|--------|-------|-------|
| Round th    | e following to the I | nundreds place |         |        |       |       |
| 123         | 298                  | 356            | 3923    | 200    | 24    | 992   |
|             |                      |                |         |        |       |       |
| Round the   | following to the te  | ens place      |         |        |       |       |
| 57          | 23                   | 63             | 87      | 652    | 565   | 99    |
|             |                      |                |         |        |       |       |
| Round of t  | the following to the | e ones place   |         |        |       |       |
| 2.3         | 10.2                 | 3.5            | 15.7    | 7.7    | 234.8 | 199.9 |
|             |                      |                |         |        |       |       |
| Round the   | following to the te  | nths place     |         |        |       |       |
| Nound the   | to the te            |                |         |        |       |       |
| 0.45        | 2.61                 | 3.789          | 0.05    | 12.123 | 9     | 3.99  |
|             |                      |                |         |        |       |       |
| Round the f | ollowing to the hur  | ndredths place |         |        |       |       |
| .005        | 1.234                | 20.235         | 200.007 | 2.001  | 4.876 | 5.099 |
|             |                      |                |         |        |       |       |
|             |                      |                |         |        |       |       |
|             |                      |                |         |        |       |       |
|             |                      |                |         |        |       |       |
|             |                      |                |         |        |       |       |
|             |                      |                |         |        |       |       |
|             |                      |                |         |        |       |       |
|             |                      |                |         |        |       |       |
|             |                      |                |         |        |       |       |
|             |                      |                |         |        |       |       |

| M9 - 2.2 - Scientif             | ic Notation HMK           |       |  |
|---------------------------------|---------------------------|-------|--|
| Write in Standard Notation      |                           |       |  |
| $4.02 \times 10^{3}$            | $8.124 \times 10^{6}$     |       |  |
|                                 |                           |       |  |
| $94 \times 10^{3}$              | $234.68 \times 10^{7}$    |       |  |
|                                 |                           |       |  |
| Write in Scientific Notation    |                           |       |  |
| 2670000                         | 605                       | 5490  |  |
| 1005                            | 1000000                   | 2700  |  |
| 1005                            |                           |       |  |
| 347                             | 53                        | 57000 |  |
|                                 |                           |       |  |
| 0.002                           | 0.0045                    | 0.32  |  |
| 0.0056                          | 0.034                     | 2.34  |  |
|                                 | 0.034                     |       |  |
| 0.00056                         | 0.0000023                 | 0.1   |  |
|                                 |                           |       |  |
| Write in Scientific Notation an | d Standard Form           |       |  |
| $54.6 \times 10^{2}$            | $0.046 \times 10^{-3}$    |       |  |
|                                 |                           |       |  |
| $345 \times 10^{-3}$            | 0.00012 × 10 <sup>9</sup> |       |  |
|                                 |                           |       |  |
|                                 |                           |       |  |

| Write the fo  | llowing n | umbers in thei | r hest ann    | ronriate nla | re la |               |                        |  |
|---------------|-----------|----------------|---------------|--------------|-------------------------------------------|---------------|------------------------|--|
|               | nowing in |                | r best app    |              |                                           |               |                        |  |
|               |           |                |               |              |                                           |               |                        |  |
|               |           |                | Real          | Numbers      |                                           |               |                        |  |
|               |           |                |               |              | $\frac{1}{3}$                             | -2.1476.      | . 6                    |  |
| √7            | π         | $\sqrt{4}$     | $\frac{3}{4}$ | √0.16        | 3                                         |               |                        |  |
| $\frac{1}{7}$ | е         | .34256         | $\sqrt{4}$    | -2           | 0                                         | 100           | ∛10                    |  |
| 0.3           | 3√8       | 8.1            | 2             | -8           | -2                                        | $\frac{1}{9}$ | $3\frac{8}{\sqrt{27}}$ |  |
| 0.5           |           | 0.1            | Z             | 0            |                                           |               | ν27                    |  |
|               |           |                |               |              |                                           |               |                        |  |
|               | Irration  | al Numbers     |               |              | R                                         | ational Numb  | bers                   |  |
|               |           |                |               |              |                                           |               |                        |  |
|               |           |                |               |              |                                           | Integers      |                        |  |
|               |           |                |               |              |                                           |               |                        |  |
|               |           |                |               |              |                                           |               |                        |  |
| -             |           |                |               |              |                                           |               |                        |  |
|               |           |                |               |              |                                           | Whole Numb    | ers                    |  |
|               |           |                |               |              |                                           |               |                        |  |
|               |           |                |               |              |                                           |               |                        |  |
|               |           |                |               |              |                                           |               |                        |  |
|               |           |                |               |              |                                           |               |                        |  |
|               |           |                |               |              |                                           | Natural Num   | bers                   |  |
|               |           |                |               |              |                                           |               |                        |  |
|               |           |                |               |              |                                           |               |                        |  |
|               |           |                |               |              |                                           |               |                        |  |
| -             |           |                |               |              |                                           |               |                        |  |

M9 - 3.1 - Add/Subract Exponent Laws HW

 Write each product as a repeated multiplication then as a single exponent (power).

 
$$3^2 \times 3^3 = \underbrace{3^{2} \times 3^3}_{3^2} \underbrace{3^3 \times 3^3}_{3^2} \underbrace{(-4)^3 \times (-4)^5}_{3^2} \underbrace{(-4)^3 \times (-4)^5}_{4^2} \underbrace{(-4)^3 \times (-4)^5}_{4^2} \underbrace{(-4)^3 \times (-4)^5}_{4^2} \underbrace{(-4)^3 \times (-4)^5}_{4^2} \underbrace{(-4)^3 \times (-4)^5}_{3^2} \underbrace{(-4)^3 \times (-2)^6}_{4^2} \underbrace{(-4)^3 \times (-4)^3 \times (-2)^6}_{4^2} \underbrace{(-4)^3 \times (-4)^3 \times (-2)^6}_{4^2} \underbrace{(-4)^3 \times (-4)^3 \times (-2)^6}_{4^2} \underbrace{(-4)^3 \times (-4)^5 \times (-2)^3 \times (-2)^6}_{4^2} \underbrace{(-4)^3 \times (-4)^3 \times (-2)^6}_{4^2} \underbrace{(-4)^3 \times (-4)^6 \times (-4)^6 \times (-4)^6}_{4^2} \underbrace{(-4)^3 \times (-4)^6 \times (-4)$$

| Write each product as                                               | s a repeated multiplica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion then as a single exp       | onent (power).                 |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|--|
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | u                              |  |
| $(3^3)^2 = (3 \times 3 \times 3)^2$                                 | $= \underbrace{(3 \times 3 \times 3) \times (3 \times 3)}_{3 \times 3} \times \underbrace{(3 \times 3)}_{$ | 3×3) <b>€</b> 3°                |                                |  |
| $(5^2)^3 =$                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                |  |
| $(7^3)^2 =$                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                |  |
| Write the following a                                               | as a single power (exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onent). Show your work.         |                                |  |
| $(4^3)^2 = \underbrace{4^{3\times 2}}_{4^6} \underbrace{4^6}_{4^6}$ | ) (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(2^2)^3 =$                     | $(5^2)^2 =$                    |  |
| $(8^2)^5 =$                                                         | (7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 <sup>3</sup> ) <sup>4</sup> = | $(9^5)^2 =$                    |  |
| Write as a multiplica                                               | tion of two powers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                |  |
| $[7 \times 2]^2 =$                                                  | $[3 \times 2]^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $[5 \times 3]^2 =$              | $(6 \times 7)^3 =$             |  |
| Write the following a                                               | s a single power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                                |  |
| $(7 \times 2)^2 =$                                                  | $[3 \times 2]^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $[5 \times 3]^2 =$              | $(6 \times 7)^3 =$             |  |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                |  |
| Write as a division o                                               | f two powers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                |  |
| $\left(\frac{3}{5}\right)^3 =$                                      | $\left(\frac{5}{7}\right)^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\left(\frac{9}{4}\right)^2 =$  | $\left(\frac{1}{2}\right)^2 =$ |  |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                |  |
| Multiply the expone                                                 | ents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                |  |
| $[7x]^2 = 7^2 x^2$                                                  | $[3x]^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $[5x^3]^2 =$                    | $2[3x^4]^2 =$                  |  |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                |  |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                |  |

#### M9 - 3.3 - Multiplication-Exponential Form (+/-) HW

Write the following in exponential form, then evaluate if possible.

| $2 \times 2 \times 2 \times 2 \times 2 = 2^5 = 32$ | $-2 \times -2 \times -2 = (-2)^3 = -8$        |
|----------------------------------------------------|-----------------------------------------------|
| $4 \times 4 \times 4 =$                            | $-3 \times -3 \times -3 =$                    |
| 5 × 5 =                                            | $-5 \times -5 =$                              |
| $3 \times 3 \times 3 \times 3 =$                   | $-6 \times -6 =$                              |
| $1 \times 1 \times 1 \times 1 =$                   | $-5 \times -5 \times -5 \times -5 =$          |
| 9 × 9 =                                            | $-6 \times -6 \times -6 \times -6 =$          |
| $6 \times 6 \times 6 =$                            | $(-2) \times (-2) \times (-2) = (-2)^3 = -8$  |
| $x \times x =$                                     | $(-2) \times (-2) \times (-2) \times (-2) =$  |
| $a \times a \times a =$                            | $(-m) \times (-m) \times (-m) =$              |
| $5 = 5^1 = 5$                                      | (-a)(-a) =                                    |
| 6 =                                                | $-4 \times 4 \times 4 = -4^3 = -64$           |
| $(3)(3)(3) = (3)^3 = 27$                           | -5 × 5 =                                      |
| (5)(5)(5) =                                        | $-9 \times 9 \times 9 \times 9 =$             |
| (x)(x) =                                           | $-(-2) \times (-2) \times (-2) = -(-2)^3 = 8$ |
|                                                    | $-(-2) \times (-2) \times (-2) \times (-2) =$ |
|                                                    | -(-3)(-3) =                                   |

#### M9 - 3.3 - Exponential-Multiplication Form (+/-) HW

Write as a repeated multiplication, then evaluate.

| $4^2 = \underbrace{4 \times 4}_{16} = \underbrace{16}_{16}$ | $-3^4 = -3 \times 3 \times 3 \times 3 = -81$                            |
|-------------------------------------------------------------|-------------------------------------------------------------------------|
| $2^3 =$                                                     | $-5^2 =$                                                                |
| $3^2 =$                                                     | $(-2)^4 = (-2)(-2)(-2)(-2) = 16$                                        |
| 2 <sup>5</sup> =                                            | $(-2)^2 =$                                                              |
| 3 <sup>3</sup> =                                            | $(-1)^4 =$                                                              |
| 2 <sup>4</sup> =                                            | $(-5)^3 =$                                                              |
| $2^2 =$                                                     | $(-2)^3 =$                                                              |
| 5 <sup>4</sup> =                                            | $-(3)^4 = -(3)(3)(3)(3) = -81$                                          |
| $4^4 =$                                                     | $-(1)^3 =$                                                              |
| 3 <sup>4</sup> =                                            | $-(2)^2 =$                                                              |
| State whether Positive or Negative                          | $-(2)^3 =$                                                              |
| $-4^{even} \underbrace{+}_{-3^{odd}} =$                     | $(-2^3) = (-2 \times 2 \times 2) = -8$                                  |
| $(-3)^{odd} =$                                              | (-2 <sup>4</sup> ) =                                                    |
| $(-6)^{even} =$                                             | $-(-1)^4 = (-1)(-1)(-1)(-1) = (-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)(-1)$ |
|                                                             | $-(-2)^3 =$                                                             |
| $-(-2)^{odd} =$                                             | $-(-3)^3 =$                                                             |
| $-(-5)^{even} =$                                            | $-(-5)^4 =$                                                             |
|                                                             |                                                                         |

-1

| M9 - 3.3         | - Perfect Cl        | nange of B     | ase HW  |        |  |
|------------------|---------------------|----------------|---------|--------|--|
| Write in squared | l exponential form. |                |         |        |  |
| $4 = 2^{2}$      |                     | 49 =           | 169 =   |        |  |
| 36 =             |                     | 9 =            | 144 =   |        |  |
| 50 -             |                     | ) _            | 177     |        |  |
| 100 =            |                     | 121 =          | 196 =   |        |  |
| 25               |                     |                |         |        |  |
| 25 =             |                     | 225 =          | 400 =   |        |  |
| Write in cubed o | exponential form.   |                |         |        |  |
| $27 = 3^3$       |                     | 64 =           | 512 =   |        |  |
|                  |                     | 242            |         |        |  |
| 8 =              |                     | 343 =          | 1 =     |        |  |
| 125 =            |                     | 216 =          | 729 =   |        |  |
|                  |                     |                |         |        |  |
|                  |                     | 1000 =         |         |        |  |
| Write to 4th po  | wer in exponential  | form.          |         |        |  |
| 1=14             |                     | 81 =           | 1296 =  |        |  |
|                  |                     | 2401           | 625 =   |        |  |
| 256 =            |                     | 2401 =         | 10000   |        |  |
| 16 =             |                     | 6561 =         | 10000 = |        |  |
|                  |                     |                |         |        |  |
| $\sim$           | erent bases in expo | onential form. |         |        |  |
| $16 = 2^4$       | 64 =                | 81 =           | 256 =   | 4096 = |  |
| $16 = 4^2$       | 64 =                | 81 =           | 256 =   | 4096 = |  |
|                  |                     |                |         |        |  |
|                  |                     |                | 256 =   | 4096 = |  |
|                  |                     |                |         | 4096 = |  |
|                  |                     |                |         |        |  |
|                  |                     |                |         |        |  |

| M9 - 3.3 - Imperfect Change              | e of Base HW |
|------------------------------------------|--------------|
| Change to Exponential Form with Lowest I |              |
|                                          |              |
| $12 = 3 \times 2^2$                      | 72 =         |
| 18 =                                     | 75 =         |
| 20                                       |              |
| 20 =                                     | 76 =         |
| 24 =                                     | 76 =         |
| 28 =                                     | 80 =         |
|                                          |              |
| 32 =                                     | 84 =         |
| 40 =                                     | 88 =         |
|                                          |              |
| 44 =                                     | 90 =         |
| 45 =                                     | 96 =         |
|                                          | 98 =         |
| 48 =                                     |              |
| 50 =                                     | 108 =        |
| 52 =                                     | 128 =        |
|                                          |              |
| 54 =                                     | 135 =        |
| 56 =                                     | 162 =        |
|                                          | 189 =        |
| 60 =                                     |              |
| 63 =                                     | 192 =        |
| 69 -                                     |              |
| 68 =                                     |              |
|                                          |              |

| M9                          | - 3                                   | .3 -   | Low      | est   | Bas               | se C            | har  | ige ( | of B | ase              | НW | ,                 |    |                   |  |  |
|-----------------------------|---------------------------------------|--------|----------|-------|-------------------|-----------------|------|-------|------|------------------|----|-------------------|----|-------------------|--|--|
|                             |                                       | xpone  | ntial Fo | rm wi | th Lov            | vest Ba         | ases |       |      |                  |    |                   |    |                   |  |  |
| 16<br>(16<br>(24<br>$2^{1}$ | $5^4 = 5^4$                           |        |          |       | 25 <sup>2</sup> = | =               |      |       | 16   | 9 <sup>3</sup> = |    |                   | 12 | 5 <sup>4</sup> =  |  |  |
| (10)<br>$(2^4)$             | $(1)^{4}$                             |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
| 2                           |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       | 62   | <b>c</b> 2       |    |                   | 10 | 24 <sup>2</sup> = |  |  |
| 64                          | 2 =                                   |        |          |       | 16 <sup>4</sup> = | _               |      |       | 02   | 5                |    |                   | 10 | 24 —              |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
| 81 <sup>3</sup>             | <sup>3</sup> =                        |        |          |       | 27 <sup>3</sup> = | _               |      |       | 49   | 5 =              |    |                   | 24 | $3^2 =$           |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
| 1                           | 8 <sup>2</sup>                        |        |          |       |                   | 12 <sup>3</sup> | _    |       |      |                  |    | 100 <sup>3</sup>  | _  |                   |  |  |
| $(3^2)$<br>$(3^4)$          | $\times 2^{1})^{2}$<br>$\times 2^{2}$ | :<br>) |          |       |                   | 12              | -    |       |      |                  |    | 100               | _  |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
|                             |                                       |        |          |       |                   | -               |      |       |      |                  |    | a - "             |    |                   |  |  |
| 72 <sup>2</sup>             | =                                     |        |          |       |                   | 60 <sup>3</sup> | =    |       |      |                  |    | 36 <sup>5</sup> = | =  |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
| 108 <sup>3</sup>            | <sup>3</sup> =                        |        |          |       |                   | 76 <sup>2</sup> | _    |       |      |                  |    | 128 <sup>4</sup>  | _  |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    | -                 |    |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |
|                             |                                       |        |          |       |                   |                 |      |       |      |                  |    |                   |    |                   |  |  |

| Write with positiv                                                                     |                                        |                                            |                      |                   |  |
|----------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|----------------------|-------------------|--|
| $2^{-3} = \begin{pmatrix} 1 \\ 2^3 \end{pmatrix} \begin{bmatrix} 2^{-3} \end{bmatrix}$ | $= 0.125 = \frac{1}{2^3}$ Check Answer | 3 <sup>-4</sup> =                          | $6^{-2} =$           |                   |  |
| 5 <sup>-2</sup> =                                                                      |                                        | $9^{-2} =$                                 | $3^{-3} =$           |                   |  |
| $\frac{1}{2^{-3}} =$                                                                   |                                        | $\frac{1}{7^{-2}} =$                       | $\frac{1}{4^{-1}} =$ |                   |  |
| $\frac{1}{3^{-4}} =$                                                                   |                                        | $\frac{1}{8^{-5}} =$                       | $\frac{1}{6^{-9}} =$ |                   |  |
| $2x^{-2} =$                                                                            |                                        | $\frac{1}{2x^{-2}} =$                      |                      |                   |  |
| $2^{-3}x =$                                                                            |                                        | $\frac{1}{2^{-3}x} =$                      |                      |                   |  |
|                                                                                        |                                        | $\frac{2^{-3}x}{\frac{1}{2^{-3}x^{-2}}} =$ |                      |                   |  |
| $2^{-3}x^{-2} =$                                                                       |                                        | $2^{-3}x^{-2}$                             |                      |                   |  |
| $\frac{5}{2y^{-3}} =$                                                                  |                                        | $\frac{x^2}{y^{-3}} =$                     |                      |                   |  |
| $\frac{5}{3^{-2}y^{-3}} =$                                                             |                                        | $\frac{x^{-2}}{y^{-3}} =$                  |                      |                   |  |
|                                                                                        |                                        | y <sup>-3</sup>                            |                      |                   |  |
| $\frac{4}{(2x)^{-2}} =$                                                                |                                        | $\frac{a^{-2}}{(2y)^{-4}}$                 |                      |                   |  |
| Write with nega                                                                        |                                        |                                            |                      |                   |  |
| 2 <sup>3</sup> =                                                                       | $\frac{1}{2^3} =$                      | $\frac{1}{2x^3} =$                         | =                    | $\frac{2}{x^3} =$ |  |

| M9 - 3.4 - Negativ                                              | e Exponents HW                    |                                   |
|-----------------------------------------------------------------|-----------------------------------|-----------------------------------|
| Write with Negative exponents                                   |                                   |                                   |
| $\frac{6^2}{6^4} =$                                             | $\frac{9^2}{9^3} =$               | $5^4 \div 5^5 =$                  |
| $\frac{7}{7^2} =$                                               | $\frac{7}{7^2} =$                 | $2^2 \div 2^5 =$                  |
| Write with Positive exponents                                   |                                   |                                   |
| $\frac{6^2}{6^4} =$                                             | $\frac{9^2}{9^3} =$               | $5^4 \div 5^5 =$                  |
| $\frac{7}{7^2} =$                                               | $\frac{7}{7^2} =$                 | $2^2 \div 2^5 =$                  |
| Write with Positive exponents $\left(\frac{2}{3}\right)^{-2} =$ | $\left(\frac{5}{7}\right)^{-4} =$ | $\left(\frac{1}{2}\right)^{-3} =$ |
|                                                                 |                                   |                                   |
| Write with Positive exponents                                   |                                   |                                   |
| $\frac{5^{-3}}{5^2} =$                                          | $\frac{6^2}{6^{-1}} =$            | $8^3 \div 8^{-4} =$               |
| $\frac{9^{-4}}{9^{-3}} =$                                       | $\frac{4}{4^2} =$                 | $7^{-2} \div 7^{-5} =$            |
|                                                                 |                                   |                                   |
| Write with Positive exponents                                   |                                   |                                   |
| $\frac{2x^{-2}}{y^{-4}} =$                                      | $\frac{5x^2}{y^{-4}} =$           | $\frac{5x^{-2}}{2y^4} =$          |
|                                                                 |                                   |                                   |
| $\frac{4a^{-3}}{b^{-4}} =$                                      | $\frac{a^{-2}}{5b^{-5}} =$        | $\frac{(6a)^{-2}}{b^5} =$         |



| M9 - 3                                | 3.5 - (     | Combo | Expone   | ents Lav                              | ws HW                                   |                               |                                        |  |
|---------------------------------------|-------------|-------|----------|---------------------------------------|-----------------------------------------|-------------------------------|----------------------------------------|--|
| Simplify                              |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       | 4        | $\frac{8 \times 2^5}{32} =$           |                                         | 8 <sup>3</sup>                | $\frac{\times 2^{10}}{5 \times 4^2} =$ |  |
| $\frac{2^3 \times 2^5}{2^2}$          | =           |       |          | 32 =                                  |                                         | 256                           | $5 \times 4^2$                         |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
| $2^8 \times 2^{-3}$                   |             |       | 0,       | $-1 > 22^{4}$                         |                                         | 2-1                           | × 16 <sup>-4</sup>                     |  |
| $\frac{2^8 \times 2^{-3}}{16}$        |             |       | <u> </u> | $\frac{^{-1} \times 32^4}{64^{-2}} =$ |                                         | 1                             | $\frac{\times 16^{-4}}{28^{-2}} =$     |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
| Simplify                              |             |       |          |                                       |                                         |                               |                                        |  |
| $\frac{(6x^5y^2)(x^5y^2)}{(2x^4y^2)}$ | $(5xy^3) =$ |       |          | $(6x^5)$                              | $\frac{y^3)^{-3}(4x^2y)}{(2x^3y)^{-2}}$ | <sup>4</sup> ) <sup>3</sup> _ |                                        |  |
| $(2x^4)$                              | ,2)         |       |          |                                       | $(2x^3y)^{-2}$                          |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |
|                                       |             |       |          |                                       |                                         |                               |                                        |  |



|            | _                      |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
|------------|------------------------|----------|-----------|-----------------------|-------------------|-----------------------|--------------|-------------------------|------------------|----------------|--------|-------------|-----|-----------------------|-----|--|
| M9         | - 5.                   | 1 - /    | Alge      | ebra                  | ic E              | xpr                   | ess          | ions                    | Н٧               | V              |        |             |     |                       |     |  |
| State t    | he Coe                 | fficier  | nt and t  | the De                | gree c            | of the <sup>-</sup>   | term.        |                         |                  |                |        |             |     |                       |     |  |
|            |                        |          | $-2x^{2}$ | -                     | $-3x^{2}$         | у                     | 5 <i>x</i>   | 2                       | - 3              | $3xy^2z$       | ١      | $\sqrt{5x}$ | 2-4 | хy                    | 1xy |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
| Coeff      | icient:                |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
| D          | egree:                 |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
| State      | the de                 | gree o   | f the P   | olynor                | nial, t           | he Lea                | ding T       | erm ar                  | nd the           | Leadir         | ng Coe | fficien     | t.  |                       |     |  |
|            |                        |          |           | 5                     | <i>x</i> – 3      | <i>x</i> <sup>2</sup> |              | <i>x</i> <sup>3</sup> + | $4x^{2}$         |                | xv –   | $2xy^2$     | + 4 |                       |     |  |
| Dogr       |                        |          |           |                       |                   |                       |              |                         |                  |                | 2      | 2           |     |                       |     |  |
| Degre      |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
| Leadi      | ng Ter                 | m:       |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
| Leadi      | ng Coe                 | fficier  | nt:       |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
| Circle     | the fo                 | llowir   | ng poly   | nomia                 | ls and            | state                 | the ty       | pe or s                 | tate w           | vhy not        | t.     |             |     |                       |     |  |
| 2~         | + 5                    |          |           | 2                     | $x^{-2}$          |                       |              |                         | r <sup>2</sup> _ | - 2 <i>x</i> + | 1      |             |     | $\overline{3x}$ +     | 0   |  |
|            | 13                     |          |           | Z¢                    | κ -               |                       |              |                         | л                |                | 1      |             | V   | 3x +                  | 9   |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
| 5 <i>x</i> | $y^{2}y + \frac{3}{2}$ | <u>-</u> |           | 6                     |                   |                       |              |                         | $\sqrt{5}x$      | + 3            |        |             | е   | <i>x</i> <sup>2</sup> |     |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
| 6 <i>x</i> | + 2                    |          |           | <i>x</i> <sup>2</sup> | <sup>3</sup> + 3x | c <sup>2</sup> – 2    | <i>x</i> + 1 |                         | <i>y</i> =       | logx -         | + 2    |             | 0   |                       |     |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |
|            |                        |          |           |                       |                   |                       |              |                         |                  |                |        |             |     |                       |     |  |

| M9 - 5.2 - Combin      | ing Like Terms HW |                  |  |
|------------------------|-------------------|------------------|--|
| Combine the like terms |                   |                  |  |
| x + x = 2x             | -5m - 2m =        | $x^2 + x^2 =$    |  |
| x + 2x =               | 2xy - xy =        | $2x^2 - x^2 =$   |  |
| a + 4a =               | x + 1 =           | $2y^2 + 3y^2 =$  |  |
| 3x - 2x =              | n + 3n =          | $x^2 - x =$      |  |
| 2a - 2a =              | 6a - 7a =         | $x^2 + 2x^2 =$   |  |
| x + 2 =                | ab + ba =         | $-5w^2 - 2w^2 =$ |  |
|                        |                   |                  |  |

Circle, square, or cloud, then combine like terms in ascending degree order.



| Multiply the following polyno | mials                    |                           |
|-------------------------------|--------------------------|---------------------------|
|                               |                          |                           |
| $6 \times 2a = 12a$           | $5m \times 2m =$         | $2x \times 3x^2 =$        |
|                               |                          |                           |
| $-4 \times 3m =$              | $-5n \times -2n =$       | $-5x^3 \times 2x^2 =$     |
|                               |                          |                           |
| $3x^2 \times 6 =$             | $a \times a \times a =$  | $x^3 \times 3x^2 =$       |
| $a \times a =$                | $2a \times a =$          |                           |
|                               |                          | (-5x)(3x) =               |
|                               |                          |                           |
|                               |                          |                           |
| Multiply the following polyn  | omials.                  |                           |
| 3(2 <i>a</i> ) =              | $x^{2}(-x) =$            | $2ab^3(ab^2) =$           |
|                               |                          |                           |
|                               |                          |                           |
| -2a(-3) =                     | 2x(5x) =                 | $3ab^{2}(2b) =$           |
|                               |                          |                           |
|                               |                          |                           |
| -5x(-2x) =                    | $-3a^{2}(2a) =$          | $-2a^2b(-b^2) =$          |
|                               |                          |                           |
|                               |                          |                           |
|                               |                          |                           |
| $3xy \times 9xz =$            | $5x^2y^3 \times 9xy^3 =$ | $-2x^4y^2 - 3x^{-1}y^3 =$ |
|                               |                          |                           |
|                               |                          |                           |
| $5x^2 \times yz =$            | $5^2 \times yz =$        | $5^2 \times 3^2 xyz =$    |
|                               |                          |                           |
|                               |                          |                           |
|                               |                          |                           |
|                               |                          |                           |
|                               |                          |                           |

| Divide the following        | iding Monomials H          |                         |                      |
|-----------------------------|----------------------------|-------------------------|----------------------|
|                             |                            |                         |                      |
| $6a \div 2 = 3a$            | $8m \div 2m =$             | $9x^2 \div 3 =$         | $12x \div -4x =$     |
| $-6m \div 3 =$              | $-10n \div -2n =$          | $(-15x) \div (3x) =$    | $-8m^2 \div (-2m) =$ |
| $18x^3 \div 3x^2 =$         | $-4x^3 \div 2x^2 =$        | $x \div x =$            | $\frac{6a}{2} =$     |
| $\frac{5}{5} =$             | $\frac{1}{1} =$            | $\frac{6x}{2x} =$       |                      |
| $\frac{4a^2}{a} =$          | $\frac{6a^2}{2a} =$        | $\frac{a}{a} =$         | $\frac{x^4}{2x^2} =$ |
| $\frac{12x^3}{4x^2} =$      | $\frac{-4x}{-10x^2} =$     | $\frac{2a}{3a^2} =$     | $\frac{15st^2}{t} =$ |
| $\frac{4st}{-6st} =$        | $\frac{-2st^2}{4s^2t^2} =$ | $\frac{10b^2c}{5c^2} =$ | $\frac{3x^2}{15y} =$ |
| $\frac{24x^2y^3}{16x^3y} =$ | $\frac{ab^2}{-3ac} =$      | $\frac{-2x^2}{-x} =$    | $\frac{-2x}{x^2} =$  |
|                             |                            |                         |                      |
|                             |                            |                         |                      |
|                             |                            |                         |                      |

| M9                    | - 5               | .3 -                        | Divi       | iding     | , Pol | lyn            | omi                 | als '            | W=I               | ЧW     |     |                          |                   |           |                         |   |  |
|-----------------------|-------------------|-----------------------------|------------|-----------|-------|----------------|---------------------|------------------|-------------------|--------|-----|--------------------------|-------------------|-----------|-------------------------|---|--|
| -                     |                   |                             |            | on/subtra |       |                |                     |                  | implify           |        |     | -5x                      | + 10              |           |                         |   |  |
| $\frac{4x+2}{2}$      | $=\frac{1}{2}$    | $\frac{1}{2} + \frac{1}{2}$ | =2x+       |           |       | 3              | $\frac{-3}{3} =$    |                  |                   |        |     | 2                        | + 10<br>2         | =         |                         |   |  |
|                       |                   |                             |            |           |       |                |                     |                  |                   |        |     |                          |                   |           |                         |   |  |
| $\frac{4x+2}{-2}$     |                   |                             |            |           |       | $\frac{6x}{-}$ | $\frac{-3}{3} =$    |                  |                   |        |     | <u>-5x</u>               | : + 10<br>-2      | _         |                         |   |  |
|                       |                   |                             |            |           |       |                |                     |                  |                   |        |     |                          |                   |           |                         |   |  |
| $\frac{-6x}{3}$       | · 6<br>=          |                             |            |           |       | <u>5x</u> -    | - 10y               | _                |                   |        |     | 6 <i>x</i>               | + 8y              |           |                         |   |  |
| 3                     |                   |                             |            |           |       |                | 5                   |                  |                   |        |     |                          | +8y<br>-2         | =         |                         |   |  |
| 4 ~ 2 _               | 0~ _              | 16                          |            |           |       |                |                     | 622              | 17r               | · 1Q   |     |                          |                   |           |                         |   |  |
| $4x^2 - 3$            | $\frac{8x-}{4}$   | <u>16</u><br>— =            |            |           |       |                |                     | <u> </u>         | $\frac{-12x}{-6}$ | + 18   | =   |                          |                   |           |                         |   |  |
|                       |                   |                             |            |           |       |                |                     |                  |                   |        |     |                          |                   |           |                         |   |  |
| $-5x^{2}$ -           | $\frac{-10x}{-5}$ | ¢ + 20                      | )<br>- =   |           |       |                |                     | $\frac{5x^2}{2}$ | -10x<br>-5x       | y + 20 | · = |                          |                   |           |                         |   |  |
|                       |                   |                             |            |           |       |                |                     |                  |                   |        |     |                          |                   |           |                         |   |  |
| $5x^2 + 3$            | <i>x</i>          |                             |            |           |       | $3x^2$         | x = -x              |                  |                   |        |     | $-5x^{2}$                | - 3y              |           |                         |   |  |
| x                     |                   |                             |            |           |       | _              | x =                 |                  |                   |        |     | x                        |                   | =         |                         |   |  |
|                       | 2                 |                             |            |           |       | 02             | · 4                 |                  |                   |        |     | 0~                       | 247               |           |                         |   |  |
| $\frac{4x^2+x}{-x}$   | $\frac{2x}{2} =$  |                             |            |           |       | $\frac{8x}{2}$ | $\frac{x^2+4x}{2x}$ | =                |                   |        |     | $\frac{-9x}{3x}$         | $\frac{-3y}{2} =$ | -         |                         |   |  |
|                       |                   |                             |            |           |       |                |                     |                  |                   |        |     |                          |                   |           |                         |   |  |
| $\frac{-10x^2}{-5}$   | - 5x              | ¢=                          |            |           |       | 10x            | $x^2 - 7x$ $5x$     | ¢<br>- =         |                   |        |     | $\frac{9x^3}{}$ +        | $\frac{6x^2}{3r}$ | - 3x<br>= | =                       |   |  |
|                       | ,r                |                             |            |           |       |                | Jr                  |                  |                   |        |     |                          | 7                 |           |                         |   |  |
| $\frac{3x-6}{x^2}$    | ;                 |                             |            |           |       | 5 <i>x</i> -   | $\frac{-7}{2x} =$   |                  |                   |        |     | 30 <i>x</i> <sup>2</sup> | -20x              | y + 1     | 5 <i>y</i> <sup>2</sup> |   |  |
| <i>x</i> <sup>2</sup> | -                 |                             |            |           |       | -2             | $\frac{1}{x}$       |                  |                   |        |     | <u>30x<sup>2</sup></u>   | <i>x</i>          |           | =                       | = |  |
| $2x^2 - 6$            | 6 <i>xy</i> -     | + 4y <sup>2</sup>           | . <u>_</u> |           |       | 3xy            | y - 4x              | $+ 5x^{2}$       | - =               |        |     | 5ab –                    |                   | + 3a      |                         |   |  |
|                       | 2 <i>y</i> 2      |                             |            |           |       |                | x                   |                  |                   |        |     |                          | ab                |           |                         |   |  |

#### M9 - 5.4 - Distribution HW

Distribute the following by multiplying the number in front/behind of the brackets by both numbers inside the brackets.

| numbers inside the brackets. |                       |             |
|------------------------------|-----------------------|-------------|
| 2(x+5) =                     | 5(3-x) =              | -3(x+7) =   |
|                              |                       |             |
|                              |                       |             |
| 4(x+5)                       | -9(x+3) =             | (x-2)7=     |
|                              |                       |             |
| 6(3x+4) =                    | -4(7x+4) =            | -2(9x+11) = |
|                              |                       |             |
| -8(3x-7) =                   |                       |             |
| -o(3x - 7) -                 | (6x - 9)3 =           | 5(3x-8) =   |
|                              |                       |             |
| x(3x+7) =                    | 4x(x-2) =             | (7x - 3)x = |
|                              |                       |             |
| $3x^2(3x-5) =$               |                       |             |
|                              | -7x(3+8x) =           | 5x(6x-3x) = |
|                              |                       |             |
|                              |                       |             |
| $-2(4x^2+8x-2)$              | $6(2x^2 - 4x + 1) =$  |             |
|                              |                       |             |
|                              |                       |             |
| $9(2x^2 + 3x + 4) =$         | $7x(2x^2 + 5x + 7) =$ |             |
|                              |                       |             |
| $-(4x^3+3x)2x =$             |                       |             |
|                              |                       |             |
|                              |                       |             |

| M9 - 5.4 - FOIL H\ | /V                              |                 |
|--------------------|---------------------------------|-----------------|
| (x+3)(x+2)         | (n + 5)(n + 9)                  | (x+6)(x+3)      |
| (x+2)(x+12)        | (x + 11)(x + 9)                 | (p+5)(p+7)      |
| (m-3)(m-8)         | (x - 14)(x - 2)                 | (x-12)(x-3)     |
| (x-6)(x+6)         | (n-3)(n+3)                      | (x+4)(x-4)      |
| (x+5)(x-5)         | ( <i>p</i> – 12)( <i>p</i> + 6) | (x+9)(x-7)      |
| (y-m)(y+2)         | (x-9)(x+z)                      | (x+y)(x-y)      |
| (6x+3)(x+3)        | (5q-4)(q-7)                     | (6x+7)(x-6)     |
| (3a - 4)(a + 2)    | (6x+y)(x-2y)                    | (9c - d)(d + 7) |
|                    |                                 |                 |

| M9 - 5                | • L      | 7131 | 710         | ny C                 |        |                | - 1 I V        | v       |         |           |                   |        |
|-----------------------|----------|------|-------------|----------------------|--------|----------------|----------------|---------|---------|-----------|-------------------|--------|
| 2(x+4)                |          | 2.2  | $x(x^{2} +$ | - 2 <i>x</i> –       | 3)     |                |                | -2x     | (x + 1) |           |                   |        |
|                       |          | 2,   |             |                      | 5)     |                |                | 27      | (~ + 1) |           | Distrib           | oution |
|                       |          |      |             |                      |        |                |                |         |         |           |                   |        |
|                       |          |      |             |                      |        |                |                |         |         |           |                   |        |
| $(\alpha + 2)(\alpha$ | 1)       |      | ()          | <b>F</b> )( <i>m</i> | 1 2)   |                |                | (m. 1   | \<br>\  | $(x-2)^2$ | (Foil)            |        |
| (x + 2)(x -           | 4)       | _    | (2x -       | 5)(x -               | + 3)   | (              | (x + 4)        | (x - 4) | .)      | (x-2)     | Distri            | oute   |
|                       |          |      |             |                      |        |                |                |         |         |           | Comb              | ine    |
|                       |          |      |             |                      |        |                |                |         |         |           |                   |        |
|                       |          |      |             |                      |        |                |                |         |         |           |                   |        |
| $(x-2)(x^2 -$         | - Ax ± 1 | )    |             | C                    | 2x + 2 | 1)( <i>x</i> – | (x - 3)(x - 3) | + 4)    |         | (         |                   |        |
| (1 2)(1               |          | .)   |             |                      |        |                |                | ,       |         | $(x-2)^3$ | Foil<br>Triple F  | oil    |
|                       |          |      |             |                      |        |                |                |         |         |           | Combir            |        |
|                       |          |      |             |                      |        |                |                |         |         |           |                   |        |
|                       |          |      |             |                      |        |                |                |         |         |           |                   |        |
|                       |          |      |             |                      |        |                |                |         |         |           | Dia Lat           | • -    |
| (x+2) + (x            | : – 5)   |      |             |                      |        | (2             | x + 2)         | - (x ·  | - 5)    |           | Distrib<br>Combii |        |
|                       |          |      |             |                      |        |                |                |         |         |           |                   |        |
|                       |          |      |             |                      |        |                |                |         |         |           |                   |        |
|                       |          |      |             |                      |        |                |                |         |         |           |                   |        |
| (~ 1)   (~            | 1 2) (4  | 2)   |             |                      |        |                |                |         |         |           |                   |        |
| (x-1) + (x            | + 2)(x   | - 3) |             |                      |        | ( <i>x</i> -   | + 5)( <i>x</i> | - 2) -  | - (x +  | 3)        | Foil              |        |
|                       |          |      |             |                      |        |                |                |         |         |           | Distribu          | ite    |
|                       |          |      |             |                      |        |                |                |         |         |           | Combin            | e      |
|                       |          |      |             |                      |        |                |                |         |         |           |                   |        |
|                       |          |      |             |                      |        |                |                |         |         |           |                   |        |
|                       |          |      |             |                      |        |                |                |         |         |           |                   |        |
| (x+3) - (x            | - 1)(~   | ⊥ 1) |             |                      |        | (x + x)        | 8) — (2        | (x + 2) | (x - 1) | )         |                   |        |
| (x + 3) - (x          | TJLI     | 11)  |             |                      |        |                |                |         | 、 -)    | ,         | Foil              |        |
|                       |          |      |             |                      |        |                |                |         |         |           | Distril<br>Comb   |        |
|                       |          |      |             |                      |        |                |                |         |         |           |                   | -      |

| M9 - 5.4 - Dist         | /Foil/Combine H | W                         |               |
|-------------------------|-----------------|---------------------------|---------------|
| $2x^2(x-2)$             | $-x(x^2-5x+2)$  | $2x^{3}(1-x)$             |               |
|                         |                 |                           |               |
| (1-x)(2+x)              | (3-x)(x-4)      | 2(x+3)(x-4)               | -2x(x+5)(x-2) |
|                         |                 |                           |               |
| (x+2)(x+2)              | $3(x-2)^2$      | 6 + (x - 3)               | 5 - (x + 4)   |
|                         |                 |                           |               |
| 2(x-1) - 3(x+2)         | 3x(x+2)         | -2x(x-5)                  |               |
|                         |                 |                           |               |
|                         |                 |                           |               |
| (x-2)(x+3) - (x-2)(x+3) | 3x(x)           | (x - 3) - 2(x + 4)(x - 4) | - 3)          |
|                         |                 |                           |               |
|                         |                 |                           |               |
|                         |                 |                           |               |

| The following Diagram             | ns are made or              | ut of Toothpicks | . Draw another Diagram.          | of Values for                   |  |
|-----------------------------------|-----------------------------|------------------|----------------------------------|---------------------------------|--|
| $\bigtriangleup$ $\bigtriangleup$ |                             | $\bigtriangleup$ |                                  | Diagrams 1-5.                   |  |
| Write Let Statements              |                             |                  |                                  |                                 |  |
| Find the                          | How many T                  |                  | Which Diagram has                |                                 |  |
| Equation                          | in the 8th Di               | agram?           | 21 Toothpicks?                   |                                 |  |
|                                   |                             |                  |                                  |                                 |  |
|                                   |                             |                  |                                  |                                 |  |
|                                   |                             |                  |                                  |                                 |  |
|                                   |                             |                  |                                  |                                 |  |
| The following Diagra              | me aro mado <i>i</i>        | out of Circlos   |                                  |                                 |  |
|                                   |                             | out of circles.  | Draw another Diagram.            | Create a Table<br>of Values for |  |
|                                   |                             |                  |                                  | Diagrams 1-5.                   |  |
| Write Let Statements              | 5                           |                  |                                  |                                 |  |
|                                   |                             |                  |                                  |                                 |  |
| Find the<br>Equation              | How many 1<br>in the 7th Di |                  | Which Diagram<br>has 31 Circles? |                                 |  |
|                                   |                             |                  |                                  |                                 |  |
|                                   |                             |                  |                                  |                                 |  |
|                                   |                             |                  |                                  |                                 |  |
|                                   |                             |                  |                                  |                                 |  |
|                                   |                             |                  |                                  |                                 |  |

# M9 - 6.1 - Patterns Word Problems HW The following Diagrams are made out of Squares. Draw another Diagram. Create a Table of Values for Diagrams 1-5.

Write Let Statements

| Find the | How many Toothpicks | Which Diagram has |  |
|----------|---------------------|-------------------|--|
| Equation | in the 8th Diagram? | 21 Toothpicks?    |  |
|          |                     |                   |  |

...

## M9 - 6.1 - Patterns Word Problems HW The following Diagrams are made out of Dots. **Create a Table** Draw another Diagram. of Values for Diagrams 1-5. . . . Write Let Statements Find the How many Dots in Which Diagram the 9th diagram? Equation has 21 toothpicks? Draw another Diagram. The following Diagrams are made out of Toothpicks. **Create a Table** of Values for Diagrams 1-5. Write Let Statements How many Toothpicks Which Diagram has Find the 144 Toothpicks? Equation in the 9th Diagram?

## M9 - 6.1 - Patterns Word Problems HW

| The following Diagrams are made out of Dots. | Draw another Diagram. | Create a Table                 |
|----------------------------------------------|-----------------------|--------------------------------|
|                                              |                       | of Values for<br>Diagrams 1-5. |
|                                              |                       |                                |

Write Let Statements

| Find the | How many Dots in the | Which Diagram has |  |
|----------|----------------------|-------------------|--|
| Equation | 15th diagram?        | 108 toothpicks?   |  |
| -        |                      |                   |  |

|         | 0.2 -      | Lillea     | r Patte | err |   |    |  |   |    |   |
|---------|------------|------------|---------|-----|---|----|--|---|----|---|
| Write a | n equatior | n relating | t to n. |     |   |    |  |   |    |   |
| n       | t          |            |         |     | n | t  |  | n | t  |   |
| 1       | 2          |            |         |     | 1 | 0  |  | 1 | 3  |   |
| 2       | 3          | -          |         |     | 2 | 1  |  | 2 | 6  |   |
| 3       | 4          |            |         |     | 3 | 2  |  | 3 | 9  |   |
| 4       | 5          | -          |         |     | 4 | 3  |  | 4 | 12 |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
| n       | t          |            |         |     | n | t  |  | n | t  |   |
| 1       | 3          |            |         |     | 1 | 4  |  | 1 | 2  |   |
| 2       | 5          |            |         |     | 2 | 7  |  | 2 | 6  |   |
| 3       | 7          | _          |         |     | 3 | 10 |  | 3 | 10 |   |
| 4       | 9          |            |         |     | 4 | 13 |  | 4 | 14 |   |
|         |            |            |         |     |   |    |  |   |    | 1 |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
| n       | t          |            |         |     | n | t  |  | n | t  |   |
| 1       | -2         |            |         |     | 1 | 0  |  | 1 | -1 |   |
| 2       | -4         |            |         |     | 2 | -1 |  | 2 | -3 | - |
| 3       | -6         |            |         | -   | 3 | -2 |  | 3 | -5 |   |
| 4       | -8         |            |         | -   | 4 | -3 |  | 4 | -7 | - |
|         |            |            |         | L   |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |
|         |            |            |         |     |   |    |  |   |    |   |

| IVI9 -   | 6.2 -    | Linear       | Patt  | terr | ר s H         | N |   |  |   |   |   |   |  |
|----------|----------|--------------|-------|------|---------------|---|---|--|---|---|---|---|--|
| Write an | equation | n relating t | to n. |      |               |   |   |  |   |   |   |   |  |
| n        | t        |              |       |      | n             | t |   |  |   | n | t |   |  |
| 1        |          |              |       |      | 1             |   |   |  |   | 1 |   |   |  |
| 2        |          |              |       |      | 2             |   |   |  |   | 2 |   |   |  |
| 3        |          | _            |       |      | 3             |   |   |  |   | 3 |   |   |  |
| 4        |          |              |       |      | 4             |   |   |  |   | 4 |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
| n<br>1   | t        |              |       |      | n             | t |   |  |   | n | t |   |  |
| 1<br>2   |          | =            |       |      | 1             |   |   |  |   | 1 |   | _ |  |
| 3        |          | -            |       |      | 2             |   |   |  |   | 2 |   | _ |  |
| 4        |          | _            |       | -    | 4             |   |   |  |   | 3 |   | _ |  |
| 4        |          |              |       |      | 4             |   |   |  |   | 4 |   | _ |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
| n        | t        |              |       |      |               |   |   |  |   |   |   |   |  |
| 1        |          |              |       |      | <b>n</b><br>1 |   | t |  |   | n | t |   |  |
| 2        |          |              |       |      | 2             |   |   |  |   | 1 |   | _ |  |
| 3        |          | _            |       |      | 3             |   |   |  |   | 2 |   |   |  |
| 4        |          | _            |       |      | 4             |   |   |  | _ | 3 |   | _ |  |
|          |          |              |       |      |               |   |   |  |   | 4 |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |
|          |          |              |       |      |               |   |   |  |   |   |   |   |  |

| M9 -     | 6.2 -     | Curve        | Patte        | ern | s HV | V |  |   |      |  |
|----------|-----------|--------------|--------------|-----|------|---|--|---|------|--|
| Write a  | n equatio | n relating t | to <i>n.</i> |     |      |   |  |   |      |  |
| n        | t         |              |              |     | n    | t |  | n | t    |  |
| 1        |           |              |              |     | 1    |   |  | 1 |      |  |
| 2        |           |              |              |     | 2    |   |  | 2 |      |  |
| 3        |           |              |              |     | 3    |   |  | 3 |      |  |
| 4        |           |              |              |     | 4    |   |  | 4 |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
| <b>n</b> | t         |              |              |     | n    | t |  | n | t    |  |
| 1        |           | _            |              |     | 1    |   |  | 1 | <br> |  |
| 2        |           | _            |              |     | 2    |   |  | 2 |      |  |
| 3        |           | _            |              |     | 3    |   |  | 3 |      |  |
| 4        |           |              |              |     | 4    |   |  | 4 |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              | _   |      |   |  |   |      |  |
| n        | t         |              |              |     | n    | t |  | n | t    |  |
| 1        |           |              |              |     | 1    |   |  | 1 |      |  |
| 2        |           |              |              |     | 2    |   |  | 2 |      |  |
| 3        |           |              |              |     | 3    |   |  | 3 |      |  |
| 4        |           |              |              |     | 4    |   |  | 4 |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |
|          |           |              |              |     |      |   |  |   |      |  |







### M9 - 10.1 - Opposite/Angle on Line HW

Find All the missing angles.



### M9 - 10.1 - Opposite/Angle on Line HW









