M9-1.1-Draw Lines of Symmetry HW

Draw lines of symmetry and label type $\mathrm{H} / \mathrm{V} / \mathrm{O}$.

M9-1.1-Draw Lines of Symmetry HW

Draw lines of symmetry and label type $\mathrm{H} / \mathrm{V} / \mathrm{O}$.

Trapezoid
Rhombus
Parallelogram

Pentagon

Heptagon

Octagon

Hexagon

Decagon

M9-1.1-Draw Lines of Symmetry HW

Draw lines of symmetry and label type $\mathrm{H} / \mathrm{V} / \mathrm{O}$.

M9-1.1-Rotational Symmetry/Angle of Rotation HW
What is the order of and angle of rotation of the following?

Isosceles Triangle

Hexagon

Decagon

M9-2.1-Rounding HMK

Round the following to the hundreds place

123	298				24	992
Round the following to the tens place						
57	23	63	87	652	565	99

Round of the following to the ones place
2.3
10.2
3.5
15.7
7.7
234.8
199.9

Round the following to the tenths place

Round the following to the hundredths place

. 005	1.234	20.235	200.007	2.001	4.876	5.099

M9-2.2 - Scientific Notation HMK

M9-2.3-Real/Ir/Rational/Integers/Whole/Natural HMK

Write the following numbers in their best appropriate place.

M9-3.1-Add/Subract Exponent Laws HW

Write each product as a repeated multiplication then as a single exponent (power).

$$
\begin{array}{ll}
\left.3^{2} \times 3^{3}=3 \times 3\right) \times(3 \times 3 \times 3 & =3 \\
2^{3} \times 2^{2}= & 5^{3} \times 5^{2}= \\
9^{4} \times 9^{5}= & \\
7^{3} \times 7^{4}=
\end{array}
$$

Write each product as a single exponent (power). Show your work!. Without Brackets.

$$
7^{3} \times 7^{4}=\quad(-3)^{2} \times(-3)^{3}=
$$

$5^{3} \times 5^{4}=$
$3^{7} \times 3^{2}=$ $(-4)^{3} \times(-4)^{5}=$
$4^{7} \times 4^{2}=$
$8^{2} \times 8=$
$(-2)^{3} \times(-2)^{5}=$

Write each quotient as a repeated multiplication in fraction form then as a single power (exponent).

$$
3^{5} \div 3^{3}=
$$

$4^{4} \div 4^{2}=$
$6^{2} \div 6^{2}=$
$2^{3} \div 2^{2}=$
$(-4)^{3} \div(-4)=$

Write each quotient of powers as a single power (exponent). Show your work.
$3^{4} \div 3^{2}=3^{4-2}=3^{2}$
$2^{4} \div 2^{2}=$
$(-2)^{6} \div(-2)^{3}=$
$4^{7} \div 4^{4}=\quad 8^{6} \div 8^{4}=$
$(-3)^{5} \div(-3)^{3}=$
$\frac{3^{5}}{3^{2}}=$
$\frac{8^{4}}{8^{2}}=$
$\frac{5^{3}}{5^{2}}=$
$\frac{6^{5}}{6^{2}}=$
$\frac{4^{2}}{4}=$
$\frac{(-3)^{4}}{(-3)^{2}}=$

M9-3.2-Multiply Exponent Laws HW

Write each product as a repeated multiplication then as a single exponent (power).
$\left.\left(3^{3}\right)^{2}=(3 \times 3 \times 3)^{2}=3 \times 3 \times 3\right) \times(3 \times 3 \times 3)$
$\left(5^{2}\right)^{3}=$
$\left(7^{3}\right)^{2}=$

Write the following as a single power (exponent). Show your work.
$\left(4^{3}\right)^{2}=4^{3 \times 2}=4^{6}$
$\left(2^{2}\right)^{3}=$
$\left(5^{2}\right)^{2}=$
$\left(8^{2}\right)^{5}=$ \qquad $\left(7^{3}\right)^{4}=$
$\left(9^{5}\right)^{2}=$

Write as a multiplication of two powers.
$\frac{[7 \times 2]^{2}}{7^{2} 2^{2}}=$
$[3 \times 2]^{2}=$
$[5 \times 3]^{2}=$
$(6 \times 7)^{3}=$

Write the following as a single power.
$(7 \times 2)^{2}=$
$[3 \times 2]^{2}=$
$[5 \times 3]^{2}=$
$(6 \times 7)^{3}=$

Write as a division of two powers.
$\left(\frac{3}{5}\right)^{3}=$
$\left(\frac{5}{7}\right)^{2}=$
$\left(\frac{9}{4}\right)^{2}=$
$\left(\frac{1}{2}\right)^{2}=$

Multiply the exponents.
$[7 x]^{2}=7^{2} x^{2}$
$[3 x]^{2}=$
$\left[5 x^{3}\right]^{2}=$
$2\left[3 x^{4}\right]^{2}=$

M9-3.3-Multiplication-Exponential Form (+/-) HW
Write the following in exponential form, then evaluate if possible.

$2 \times 2 \times 2 \times 2 \times 2=2^{5}=32$	$-2 \times-2 \times-2=(-2)^{3}=-8$
$4 \times 4 \times 4=$	$-3 \times-3 \times-3=$
$5 \times 5=$	$-5 \times-5=$
$3 \times 3 \times 3 \times 3=$	$-6 \times-6=$
$1 \times 1 \times 1 \times 1=$	$-5 \times-5 \times-5 \times-5=$
$9 \times 9=$	$-6 \times-6 \times-6 \times-6=$
$6 \times 6 \times 6=$	$(-2) \times(-2) \times(-2)=(-2)^{3}=-8$
$x \times x=$	$(-2) \times(-2) \times(-2) \times(-2)=$
$a \times a \times a=$	$(-m) \times(-m) \times(-m)=$
$5=5^{1}=5$	$(-a)(-a)=$
$6=$	$-4 \times 4 \times 4=-4^{3}=-64$
$(3)(3)(3)=(3)^{3}=27$	$-5 \times 5=$
$(5)(5)(5)=$	$-9 \times 9 \times 9 \times 9=$
$(x)(x)=$	$-(-2) \times(-2) \times(-2)=-(-2)^{3}=8$
	$-(-2) \times(-2) \times(-2) \times(-2)=$
	$-(-3)(-3)=$

$$
-(-3)(-3)=
$$

M9-3.3-Exponential-Multiplication Form (+/-) HW
Write as a repeated multiplication, then evaluate.

$2^{3}=$
$3^{2}=$
$2^{5}=$
$3^{3}=$
$2^{4}=$
$2^{2}=$
$5^{4}=$
$4^{4}=$
$3^{4}=$

State whether Positive or Negative
$-4^{\text {even }}=+$
$-3^{\text {odd }}=$
$(-3)^{o d d}=$
$(-6)^{\text {even }}=$
$-(-2)^{\text {odd }}=$
$-(-5)^{\text {even }}=$
$-(-1)^{4}=-(-1)(-1)(-1)(-1)-1$
$-(-2)^{3}=$
$-(-3)^{3}=$
$-(2)^{3}=$
$\left(-2^{3}\right)=-(-2 \times 2 \times 2)=-8$
$\left(-2^{4}\right)=$
$-(-5)^{4}=$

M9-3.3-Perfect Change of Base HW

Write in squared exponential form.

Write in cubed exponential form.

Write to 4th power in exponential form.

Write with different bases in exponential form.

M9-3.3-Imperfect Change of Base HW

Change to Exponential Form with Lowest Bases

M9-3.3-Lowest Base Change of Base HW

Change to Exponential Form with Lowest Bases

| $16^{4}=$
 $(16)^{4}$
 $\left(2^{4}\right)^{4}$
 2^{16} |
| :--- | $81^{3}=$ $27^{3}=$

$49^{5}=$
$243^{2}=$

$72^{2}=$
$108^{3}=$
$60^{3}=$
$36^{5}=$
$128^{4}=$

M9-3.4-Negative Exponents HW

Write with positive exponents

Write with negative exponents
$2^{3}=\square \quad \frac{1}{2^{3}}=\square \quad \frac{1}{2 x^{3}}=\square \quad \frac{2}{x^{3}}=$

M9-3.4-Negative Exponents HW

Write with Negative exponents
$\frac{6^{2}}{6^{4}}=$
$\frac{9^{2}}{9^{3}}=$
$5^{4} \div 5^{5}=$
$\frac{7}{7^{2}}=$

$$
\frac{7}{7^{2}}=
$$

$$
2^{2} \div 2^{5}=
$$

Write with Positive exponents

Write with Positive exponents

$\left(\frac{2}{3}\right)^{-2}=$
$\left(\frac{5}{7}\right)^{-4}=$

$$
\left(\frac{1}{2}\right)^{-3}=
$$

Write with Positive exponents

$\frac{5^{-3}}{5^{2}}=$
$\frac{6^{2}}{6^{-1}}=$
$8^{3} \div 8^{-4}=$
$\frac{9^{-4}}{9^{-3}}=$
$\frac{4}{4^{2}}=$

$$
7^{-2} \div 7^{-5}=
$$

Write with Positive exponents
$\frac{2 x^{-2}}{y^{-4}}=$
$\frac{5 x^{2}}{y^{-4}}=$
$\frac{5 x^{-2}}{2 y^{4}}=$
$\frac{4 a^{-3}}{b^{-4}}=$
$\frac{a^{-2}}{5 b^{-5}}=$
$\frac{(6 a)^{-2}}{b^{5}}=$

M9-3.4-Change of Base Negative Exponents HW

Change to positive exponents with lowest base.

Write with Positive Exponents
$8^{-2}=$
$\left(2^{3}\right)^{-2}$
$\stackrel{2}{2}^{2^{-6}}$
Change of Base
Change of Base OR Multiply Exponents

Write with Positive Exponents
Multiply Exponents

$$
8^{-2}=0.015625=\frac{1}{2^{6}} \quad \text { Check Answer }
$$

Change to negative exponents with lowest base.

		Negative Laws
$\frac{1}{2}=$		1
1	Change of Base	$\frac{1}{2^{1}}=2^{-1}$
$\overline{2^{1}}$	Multiply Expon	
2^{-1}	Write with Pos	ive Exponents

$\frac{1}{81}=$	$\frac{1}{9}=\frac{1}{3^{2}}=3^{-2}$ $\frac{1}{3^{4}}$
Change of Base 3^{-4} Negative Laws Multiply Exponents Write with Positive Exponents	

$\frac{\left(\frac{1}{25}\right)^{2}=}{} \begin{aligned} & \\ & \frac{1^{2}}{25^{2}}\end{aligned} \quad$ Multiply Exponents
Negative Laws
Multiply Exponents
OR
Change of Base
$\frac{25^{2}}{\left(5^{2}\right)^{2}}$
Change of Base
$\left(\frac{1}{25}\right)^{2}=$

Multiply Exponents Again Negative Laws

Change to positive exponents with lowest base.

$27^{-2}=$
$25^{-2}=$
$64^{-1}=$
$16^{-3}=$
$4^{-3}=$
$243^{-2}=$

Change to negative exponents with lowest base.
$\left(\frac{1}{9}\right)^{3}=$
$\left(\frac{1}{2}\right)^{-4}=$
$\left(\frac{4}{9}\right)^{-3}$

M9-3.5-Combo Exponents Laws HW

Simplify

$$
\frac{2^{3} \times 2^{5}}{2^{2}}=
$$

$$
\frac{4^{8} \times 2^{5}}{32}=\quad \frac{8^{3} \times 2^{10}}{256 \times 4^{2}}=
$$

$\frac{2^{8} \times 2^{-3}}{16}=$

$$
\frac{8^{-1} \times 32^{4}}{64^{-2}}=
$$

$$
\frac{2^{-1} \times 16^{-4}}{128^{-2}}=
$$

Simplify

$$
\frac{\left(6 x^{5} y^{2}\right)\left(5 x y^{3}\right)}{\left(2 x^{4} y^{2}\right)}=
$$

$$
\frac{\left(6 x^{5} y^{3}\right)^{-3}\left(4 x^{2} y^{4}\right)^{3}}{\left(2 x^{3} y\right)^{-2}}=
$$

M9-3.6-Exponents Negative Brackets Notes HW

Simplify without Brackets

$\left(-3 x^{2}\right)^{2}=$
$\left(-4 x^{-3}\right)^{3}=$

$$
\left(-7 x^{2}\right)^{-2}=
$$

$\left(-5 x^{3}\right)^{3}=$
$-\left(-4 x^{2}\right)^{4}=$
$-2\left(-5 x^{2}\right)^{-3}=$

Simplify without Brackets
$\left(\frac{4 x^{3}}{2 x^{2}}\right)^{5}=$
$\left(\frac{2 x^{5}}{7 x^{6}}\right)^{2}=$
$\left(\frac{1 x^{4}}{2 x^{3}}\right)^{-2}=$
$\left(\frac{8 x^{4}}{2 x^{2}}\right)^{5}=$
$\left(\frac{3 x^{5}}{5 x^{-2}}\right)^{3}=$
$\left(\frac{3 x^{-4}}{2 x^{3}}\right)^{-2}=$

M9-5.1-Algebraic Expressions HW

State the Coefficient and the Degree of the term.

$$
\begin{array}{lll|l|l|l|l}
-2 x^{2} & -3 x^{2} y & 5 x & 2 & -3 x y^{2} z & \sqrt{5} x & 2^{-4} x y
\end{array} 1 x y
$$

Coefficient:

Degree:

State the degree of the Polynomial, the Leading Term and the Leading Coefficient.

$$
5 x-3 x^{2} \quad x^{3}+4 x^{2} \quad x y-2 x y^{2}+4
$$

Degree:

Leading Term:

Leading Coefficient:

Circle the following polynomials and state the type or state why not.
$2 x+5$
$2 x^{-2}$
$x^{2}-2 x+1$
$\sqrt{3 x}+9$
$5 x^{2} y+\frac{3}{x}$
6
$\sqrt{5} x+3$
$e^{x^{2}}$
$6 x+2$

$$
x^{3}+3 x^{2}-2 x+1
$$

$$
y=\log x+2
$$

0

M9-5.2-Combining Like Terms HW

Combine the like terms

Circle, square, or cloud, then combine like terms in ascending degree order.

M9-5.3-Multiplying Monomials HW

Multiply the following polynomials.

Multiply the following polynomials.

M9-5.3-Dividing Monomials HW

Divide the following polynomials.

M9-5.3 - Dividing Polynomials W=HW

Separate into an addition/subtraction of fractions and simplify.

$$
\frac{2 x^{2}-6 x y+4 y^{2}}{2 y^{2}}=
$$

$\frac{3 x y-4 x+5 x^{2}}{-x}=$
$\frac{5 a b-10 b^{2}+3 a}{a b}=$

M9-5.4-Distribution HW

Distribute the following by multiplying the number in front/behind of the brackets by both numbers inside the brackets.

M9-5.4-FOIL HW

$(x-6)(x+6) \quad(n-3)(n+3) \quad(x+4)(x-4)$
$(x+5)(x-5)$

$$
(p-12)(p+6)
$$

$$
(x+9)(x-7)
$$

$$
(y-m)(y+2)
$$

$$
(x-9)(x+z)
$$

$$
(x+y)(x-y)
$$

$(6 x+3)(x+3)$
$(5 q-4)(q-7)$
$(6 x+7)(x-6)$
$(3 a-4)(a+2)$
$(6 x+y)(x-2 y)$
$(9 c-d)(d+7)$

M9-5.4-Dist/Foil/Combine HW

$$
2(x+4)
$$

$2 x\left(x^{2}+2 x-3\right)$
$-2 x(x+1)$
Distribution

$(x+2)(x-4)$	$-(2 x-5)(x+3)$	$(x+4)(x-4)$	$(x-2)^{2}$

(Foil) Distribute Combine

Foil
Triple Foil Combine

Distribute Combine

Foil
Distribute
Combine

Foil
Distribute Combine

M9-5.4-Dist/Foil/Combine HW

$2 x^{2}(x-2)$
$-x\left(x^{2}-5 x+2\right)$
$2 x^{3}(1-x)$
$(1-x)(2+x)$
$(3-x)(x-4)$
$2(x+3)(x-4)$
$-2 x(x+5)(x-2)$
$(x+2)(x+2)$
$3(x-2)^{2}$
$6+(x-3)$
$5-(x+4)$
$2(x-1)-3(x+2)$
$3 x(x+2)-2 x(x-5)$
$(x-2)(x+3)-(x-2)(x+3)$
$3 x(x+1)(x-3)-2(x+4)(x-3)$

M9-6.1 - Patterns Word Problems HW

The following Diagrams are made out of Toothpicks. Draw another Diagram. Create a Table

Write Let Statements

Find the Equation

How many Toothpicks in the 8th Diagram?
of Values for Diagrams 1-5.

Which Diagram has 21 Toothpicks?

The following Diagrams are made out of Circles. Draw another Diagram.

Write Let Statements

Find the
Equation

How many Toothpicks in the 7th Diagram?

Create a Table of Values for
Diagrams 1-5.

M9-6.1-Patterns Word Problems HW

The following Diagrams are made out of Squares. Draw another Diagram.

Write Let Statements

Find the Equation

How many Toothpicks in the 8th Diagram?

Create a Table of Values for Diagrams 1-5.

M9-6.1 - Patterns Word Problems HW

The following Diagrams are made out of Toothpicks. Draw another Diagram.

Write Let Statements

Find the
Equation

How many Toothpicks in the 9th Diagram?

Create a Table of Values for Diagrams 1-5.
\qquad

Which Diagram has 144 Toothpicks?

M9-6.1 - Patterns Word Problems HW

The following Diagrams are made out of Dots.

Draw another Diagram.

Create a Table of Values for Diagrams 1-5.

Write Let Statements

Find the Equation

How many Dots in the 15th diagram?

Which Diagram has 108 toothpicks?

M9-6.2-Linear Patterns HW

Write an equation relating \boldsymbol{t} to \boldsymbol{n}.

\boldsymbol{n}	\boldsymbol{t}
1	
2	
3	3
4	

\boldsymbol{n}	\boldsymbol{t}
1	0
2	1
3	2
4	3

\boldsymbol{n}	\boldsymbol{t}
1	3
2	6
3	9
4	12

\boldsymbol{n}	\boldsymbol{t}
1	3
2	
3	7
4	9

\boldsymbol{n}	\boldsymbol{t}
1	4
2	7
3	10
4	13

\boldsymbol{n}	\boldsymbol{t}
1	2
2	6
3	10
4	14

\boldsymbol{n}	\boldsymbol{t}
1	-2
2	-4
3	-6
4	-8

\boldsymbol{n}	\boldsymbol{t}
1	0
2	-1
3	-2
4	-3

\boldsymbol{n}	\boldsymbol{t}
$\mathbf{1}$	-1
$\mathbf{2}$	-3
$\mathbf{3}$	-5
$\mathbf{4}$	-7

M9-6.2-Linear Patterns HW

Write an equation relating \boldsymbol{t} to \boldsymbol{n}.

\boldsymbol{n}		\boldsymbol{t}
1		
2		
3		
4		

\boldsymbol{n}	\boldsymbol{t}	
1		
2		
3		
4		

n		\boldsymbol{t}
1		
2		
3		
4		

M9-6.2-Curve Patterns HW

Write an equation relating \boldsymbol{t} to \boldsymbol{n}.

\boldsymbol{n}	\boldsymbol{t}	
1		
2		
3		
4		

\boldsymbol{n}	\boldsymbol{t}	
1		
2		
3		
4		

n		\boldsymbol{t}
1		
2		
3		
4		

M9-9.1 - Inequalities on a Number Line HW

Plot on a Number Line.

$x<3$

$$
x \geq-2
$$

$$
x \leq-1
$$

$-1<x \leq 2$

$-1 \leq x<0$

Plot on a Number Line.
$x>2$

$3<x$
$2 \leq x<4$
$x>5$
$-2 \geq x$
$-1 \leq x<4$

M9 - 10.0 - Angles in a Triangle HW

$\angle c=$
$\angle b=$

$$
\angle x=
$$

M9-10.1-Opposite/Angle on Line HW

Find the missing angle. State your Reasoning.

$\angle^{\prime} s$ on Line Sum to 180°

M9-10.1-Opposite/Angle on Line HW
Find All the missing angles.

M9-10.1-Opposite/Angle on Line HW
Find All the missing angles.

M9-10.2 - Find Inscribed/Central Angle HW

Find the unknown angle.

M9-10.3 - Rad Perp. To Tan/Chord HW

Find the unknown angle or length. \mathbf{O} is the Centre. State your Reasoning.

$A C=5 \quad C B=$

$$
A B=12 \quad A \quad C B=
$$

Radius $=$
$B C=$
$Y \mathrm{~V}=$
WZ =

M9-10.3-Circles/Semis/Triangles HW

Find the unknown angle or length. \mathbf{O} is the Centre. State your Reasoning.

M9-10.5 - Central/Inscribed With Triangles HW

Find the unknown angle or length. O is the Centre. State your Reasoning.

