

| Triangles <br> Draw Triangles $180^{\circ}$ in a Triangle Isosceles Equilateral Right - Pythagoras 3rd Angle in a triangle | Congruent Triangles <br> SAS <br> ASA <br> SSS <br> AAS <br> Similar Triangles <br> AAA | Parallel Line Rules <br> Angles on a line Sum to $180^{\circ}$. <br> Complementary Angles add to $90^{\circ}$. <br> Angles on a Point Sum to $360^{\circ}$ <br> Opposite Angles are Equal. <br> Alternate Interior angles Equal. <br> Corresponding Angles Equal. <br> Co-Interiors Angles add to $180^{\circ}$ |  |
| :---: | :---: | :---: | :---: |
| Equal Angles/Parallel Tick/Double Tick The Arrow/Double* the Pa | ual Lines/Angles lel Lines | Methods <br> Rotate the Page <br> Extend Parallel/Lines <br> Extend the Transversal Lines <br> Draw a Radius/Connect Points <br> Draw a Radius to Exterior Point <br> Identify an unknown as "x" |  |
| Identifying Angles in C <br> 1. Make a slice of Pie w <br> 2. Central/Inscribed An <br> 3. Arc/Chord is crust of <br> 4. Shade Arc | les <br> your Left and Right is between your Ind ece of Pie. | d. ingers. | Finding Shared Arcs/Chords <br> Do you see an Angle measure? <br> What type of Angle is it? <br> Where is its Arc/Chord? <br> Shade in its Arc. <br> Any other Angles from that Arc/Chord? |
| Circle Rules (Bisects: Cuts in half) <br> Central Angles from Equal Arcs are Equal. Inscribed Angles from Same/Equal Arc/s are Equal. <br> Inscribed Angles are Half Central Angles from Same/Equal Arc/s. Central Angles are Twice Inscribed Angles from Same/Equal Arc/s. <br> Tangent Lines are Perpendicular to Radius. <br> Perpendicular Bisector of a Chord passes through Center of Circle. <br> Tangents to Exterior Points are Equal. <br> Opposite Angles in a Cyclic Quadrilateral Sum to $180^{\circ}$. Inscribed Angles in a Semi-Circle Equal $90^{\circ}$. <br> The Angle between the Tangent and the Chord is Equal to the Inscribed Angle on the Opposite side of the Chord. |  |  | ual Arc/s. qual Arc/s. <br> f Circle. <br> Agons: <br> Pent: 5 <br> Hex: 6 <br> Hept: 7 <br> Oct: 8 <br> Non: 9 <br> the Inscribed <br> Dec: 10 <br> DoDec: 12 |
| $\begin{aligned} & \text { Polygons } n=\# \text { of sides } \\ & \text { Regular: All Sides/Angles }= \\ & \text { Sum of Interior Angles }=(n-2) \times 180^{\circ} \quad \begin{array}{l} \text { Angles in a Triangle Sum to } 180^{\circ} \\ \text { Angles in a Quadrilateral Sum to } 360^{\circ} \\ \text { Angles in a Pentagon Sum to } 540^{\circ} \\ \text { (Draw Triangles: Sum }=180^{\circ} \times \# \text { of } \triangle \text { 's) } \\ \text { Interior Angle }=\frac{\text { Sum }}{n}=\frac{(n-2) \times 180^{\circ}}{n} \\ \text { Interior + Exterior }=180^{\circ} \end{array} \quad \begin{array}{l} \text { Ext } \quad \text { Sum of all Exterior Angles sum to } 360^{\circ} \end{array} \end{aligned}$ |  |  |  |

