M9-3.1-Add/Subract Exponent Laws HW

Write each product as a repeated multiplication then as a single exponent (power).

$$
\begin{array}{ll}
\left.3^{2} \times 3^{3}=3 \times 3\right) \times(3 \times 3 \times 3 & =3 \\
2^{3} \times 2^{2}= & 5^{3} \times 5^{2}= \\
9^{4} \times 9^{5}= & \\
7^{3} \times 7^{4}=
\end{array}
$$

Write each product as a single exponent (power). Show your work!. Without Brackets.

$$
7^{3} \times 7^{4}=\quad(-3)^{2} \times(-3)^{3}=
$$

$5^{3} \times 5^{4}=$
$3^{7} \times 3^{2}=$ $(-4)^{3} \times(-4)^{5}=$
$4^{7} \times 4^{2}=$
$8^{2} \times 8=$
$(-2)^{3} \times(-2)^{5}=$

Write each quotient as a repeated multiplication in fraction form then as a single power (exponent).

$$
3^{5} \div 3^{3}=
$$

$4^{4} \div 4^{2}=$
$6^{2} \div 6^{2}=$
$2^{3} \div 2^{2}=$
$(-4)^{3} \div(-4)=$

Write each quotient of powers as a single power (exponent). Show your work.
$3^{4} \div 3^{2}=3^{4-2} 3$
$2^{4} \div 2^{2}=$
$4^{7} \div 4^{4}=$
$8^{6} \div 8^{4}=$
$(-2)^{6} \div(-2)^{3}=$
$4^{7} \div$
$\frac{3^{5}}{3^{2}}=$
$\frac{8^{4}}{8^{2}}=$
$(-3)^{5} \div(-3)^{3}=$
$\frac{5^{3}}{5^{2}}=$
$\frac{6^{5}}{6^{2}}=$
$\frac{4^{2}}{4}=$
$\frac{(-3)^{4}}{(-3)^{2}}=$

