M9-3.3-Multiplication-Exponential Form (+/-) HW
Write the following in exponential form, then evaluate if possible.

$2 \times 2 \times 2 \times 2 \times 2=2^{5}=32$	$-2 \times-2 \times-2=(-2)^{3}=-8$
$4 \times 4 \times 4=$	$-3 \times-3 \times-3=$
$5 \times 5=$	$-5 \times-5=$
$3 \times 3 \times 3 \times 3=$	$-6 \times-6=$
$1 \times 1 \times 1 \times 1=$	$-5 \times-5 \times-5 \times-5=$
$9 \times 9=$	$-6 \times-6 \times-6 \times-6=$
$6 \times 6 \times 6=$	$(-2) \times(-2) \times(-2)=(-2)^{3}=-8$
$x \times x=$	$(-2) \times(-2) \times(-2) \times(-2)=$
$a \times a \times a=$	$(-m) \times(-m) \times(-m)=$
$5=5^{1}=5$	$(-a)(-a)=$
$6=$	$-4 \times 4 \times 4=-4^{3}=-64$
$(3)(3)(3)=(3)^{3}=27$	$-5 \times 5=$
$(5)(5)(5)=$	$-9 \times 9 \times 9 \times 9=$
$(x)(x)=$	$-(-2) \times(-2) \times(-2)=-(-2)^{3}=8$
	$-(-2) \times(-2) \times(-2) \times(-2)=$
	$-(-3)(-3)=$

$$
-(-3)(-3)=
$$

M9-3.3-Exponential-Multiplication Form (+/-) HW
Write as a repeated multiplication, then evaluate.

$2^{3}=$
$3^{2}=$
$2^{5}=$
$3^{3}=$
$2^{4}=$
$2^{2}=$
$5^{4}=$
$4^{4}=$
$3^{4}=$

State whether Positive or Negative
$-4^{\text {even }}=+$
$-3^{\text {odd }}=$
$(-3)^{o d d}=$
$(-6)^{\text {even }}=$
$-(-2)^{\text {odd }}=$
$-(-5)^{\text {even }}=$
$-(-2)^{3}=$
$-(-3)^{3}=$

$-5^{2}=$
$\left.(-2)^{4}=-2\right)(-2)(-2)(-2)-16$
$(-2)^{2}=$
$(-1)^{4}=$
$(-5)^{3}=$
$(-2)^{3}=$
$-(3)^{4}=-(3)(3)(3)(3)-81$
$-(1)^{3}=$
$-(2)^{2}=$
$-(2)^{3}=$
$\left(-2^{3}\right)=-(-2 \times 2 \times 2)=-8$
$\left(-2^{4}\right)=$
$-(-1)^{4}=-(-1)(-1)(-1)(-1)-1$
$-(-5)^{4}=$

M9-3.3-Perfect Change of Base HW

Write in squared exponential form.

Write in cubed exponential form.

Write to 4th power in exponential form.

Write with different bases in exponential form.

M9-3.3-Imperfect Change of Base HW

Change to Exponential Form with Lowest Bases

M9-3.3-Lowest Base Change of Base HW

Change to Exponential Form with Lowest Bases

| $16^{4}=$
 $(16)^{4}$
 $\left(2^{4}\right)^{4}$
 2^{16} |
| :--- | $81^{3}=$ $27^{3}=$

$$
49^{5}=
$$

$$
243^{2}=
$$

$72^{2}=$
$108^{3}=$
$60^{3}=$
$36^{5}=$
$128^{4}=$

