M9-3.1-Add/Subract Exponent Laws HW

Write each product as a repeated multiplication then as a single exponent (power).

$$
\begin{array}{ll}
\left.3^{2} \times 3^{3}=3 \times 3\right) \times(3 \times 3 \times 3 & =3 \\
2^{3} \times 2^{2}= & 5^{3} \times 5^{2}= \\
9^{4} \times 9^{5}= & \\
7^{3} \times 7^{4}=
\end{array}
$$

Write each product as a single exponent (power). Show your work!. Without Brackets.

$$
7^{3} \times 7^{4}=\quad(-3)^{2} \times(-3)^{3}=
$$

$5^{3} \times 5^{4}=$
$3^{7} \times 3^{2}=$ $(-4)^{3} \times(-4)^{5}=$
$4^{7} \times 4^{2}=$
$8^{2} \times 8=$
$(-2)^{3} \times(-2)^{5}=$

Write each quotient as a repeated multiplication in fraction form then as a single power (exponent).

$$
3^{5} \div 3^{3}=
$$

$4^{4} \div 4^{2}=$
$6^{2} \div 6^{2}=$
$2^{3} \div 2^{2}=$
$(-4)^{3} \div(-4)=$

Write each quotient of powers as a single power (exponent). Show your work.
$3^{4} \div 3^{2}=3^{4-2} 3$
$2^{4} \div 2^{2}=$
$4^{7} \div 4^{4}=$
$8^{6} \div 8^{4}=$
$(-2)^{6} \div(-2)^{3}=$
$4^{7} \div$
$\frac{3^{5}}{3^{2}}=$
$\frac{8^{4}}{8^{2}}=$
$(-3)^{5} \div(-3)^{3}=$
$\frac{5^{3}}{5^{2}}=$
$\frac{6^{5}}{6^{2}}=$
$\frac{4^{2}}{4}=$
$\frac{(-3)^{4}}{(-3)^{2}}=$

M9-3.2-Multiply Exponent Laws HW

Write each product as a repeated multiplication then as a single exponent (power).
$\left.\left(3^{3}\right)^{2}=(3 \times 3 \times 3)^{2}=3 \times 3 \times 3\right) \times(3 \times 3 \times 3)$
$\left(5^{2}\right)^{3}=$
$\left(7^{3}\right)^{2}=$

Write the following as a single power (exponent). Show your work.
$\left(4^{3}\right)^{2}=4^{3 \times 2}=4^{6}$
$\left(2^{2}\right)^{3}=$
$\left(5^{2}\right)^{2}=$
$\left(8^{2}\right)^{5}=$ \qquad $\left(7^{3}\right)^{4}=$
$\left(9^{5}\right)^{2}=$

Write as a multiplication of two powers.
$\frac{[7 \times 2]^{2}}{7^{2} 2^{2}}=$
$[3 \times 2]^{2}=$
$[5 \times 3]^{2}=$
$(6 \times 7)^{3}=$

Write the following as a single power.
$(7 \times 2)^{2}=$
$[3 \times 2]^{2}=$
$[5 \times 3]^{2}=$
$(6 \times 7)^{3}=$

Write as a division of two powers.
$\left(\frac{3}{5}\right)^{3}=$
$\left(\frac{5}{7}\right)^{2}=$
$\left(\frac{9}{4}\right)^{2}=$
$\left(\frac{1}{2}\right)^{2}=$

Multiply the exponents.
$[7 x]^{2}=7^{2} x^{2}$
$[3 x]^{2}=$
$\left[5 x^{3}\right]^{2}=$
$2\left[3 x^{4}\right]^{2}=$

M9-3.3-Multiplication-Exponential Form (+/-) HW
Write the following in exponential form, then evaluate if possible.

$2 \times 2 \times 2 \times 2 \times 2=2^{5}=32$	$-2 \times-2 \times-2=(-2)^{3}=-8$
$4 \times 4 \times 4=$	$-3 \times-3 \times-3=$
$5 \times 5=$	$-5 \times-5=$
$3 \times 3 \times 3 \times 3=$	$-6 \times-6=$
$1 \times 1 \times 1 \times 1=$	$-5 \times-5 \times-5 \times-5=$
$9 \times 9=$	$-6 \times-6 \times-6 \times-6=$
$6 \times 6 \times 6=$	$(-2) \times(-2) \times(-2)=(-2)^{3}=-8$
$x \times x=$	$(-2) \times(-2) \times(-2) \times(-2)=$
$a \times a \times a=$	$(-m) \times(-m) \times(-m)=$
$5=5^{1}=5$	$(-a)(-a)=$
$6=$	$-4 \times 4 \times 4=-4^{3}=-64$
$(3)(3)(3)=(3)^{3}=27$	$-5 \times 5=$
$(5)(5)(5)=$	$-9 \times 9 \times 9 \times 9=$
$(x)(x)=$	$-(-2) \times(-2) \times(-2)=-(-2)^{3}=8$
	$-(-2) \times(-2) \times(-2) \times(-2)=$
	$-(-3)(-3)=$

$$
-(-3)(-3)=
$$

M9-3.3-Exponential-Multiplication Form (+/-) HW
Write as a repeated multiplication, then evaluate.

$2^{3}=$
$3^{2}=$
$2^{5}=$
$3^{3}=$
$2^{4}=$
$2^{2}=$
$5^{4}=$
$4^{4}=$
$3^{4}=$

State whether Positive or Negative
$-4^{\text {even }}=+$
$-3^{\text {odd }}=$
$(-3)^{o d d}=$
$(-6)^{\text {even }}=$
$-(-2)^{\text {odd }}=$
$-(-5)^{\text {even }}=$
$-(-2)^{3}=$
$-(-3)^{3}=$

$-5^{2}=$
$\left.(-2)^{4}=-2\right)(-2)(-2)(-2)-16$
$(-2)^{2}=$
$(-1)^{4}=$
$(-5)^{3}=$
$(-2)^{3}=$
$-(3)^{4}=-(3)(3)(3)(3)-81$
$-(1)^{3}=$
$-(2)^{2}=$
$-(2)^{3}=$
$\left(-2^{3}\right)=-(-2 \times 2 \times 2)=-8$
$\left(-2^{4}\right)=$
$-(-1)^{4}=-(-1)(-1)(-1)(-1)-1$
$-(-5)^{4}=$

M9-3.3-Perfect Change of Base HW

Write in squared exponential form.

Write in cubed exponential form.

Write to 4th power in exponential form.

Write with different bases in exponential form.

M9-3.3-Imperfect Change of Base HW

Change to Exponential Form with Lowest Bases

M9-3.3-Lowest Base Change of Base HW

Change to Exponential Form with Lowest Bases

| $16^{4}=$
 $(16)^{4}$
 $\left(2^{4}\right)^{4}$
 2^{16} |
| :--- | $81^{3}=$ $27^{3}=$

$49^{5}=$
$243^{2}=$

$72^{2}=$
$108^{3}=$
$60^{3}=$
$36^{5}=$
$128^{4}=$

M9-3.4-Negative Exponents HW

Write with positive exponents

Write with negative exponents
$2^{3}=\square \quad \frac{1}{2^{3}}=\square \quad \frac{1}{2 x^{3}}=\square \quad \frac{2}{x^{3}}=$

M9-3.4-Negative Exponents HW

Write with Negative exponents
$\frac{6^{2}}{6^{4}}=$
$\frac{9^{2}}{9^{3}}=$
$\frac{7}{7^{2}}=$
$5^{4} \div 5^{5}=$
$\frac{7}{7^{2}}=$
$2^{2} \div 2^{5}=$

Write with Positive exponents

Write with Positive exponents

$\left(\frac{2}{3}\right)^{-2}=$
$\left(\frac{5}{7}\right)^{-4}=$
$\left(\frac{1}{2}\right)^{-3}=$

Write with Positive exponents

$\frac{5^{-3}}{5^{2}}=$
$\frac{6^{2}}{6^{-1}}=$
$8^{3} \div 8^{-4}=$
$\frac{9^{-4}}{9^{-3}}=$
$\frac{4}{4^{2}}=$

$$
7^{-2} \div 7^{-5}=
$$

Write with Positive exponents
$\frac{2 x^{-2}}{y^{-4}}=$
$\frac{5 x^{2}}{y^{-4}}=$
$\frac{5 x^{-2}}{2 y^{4}}=$
$\frac{4 a^{-3}}{b^{-4}}=$
$\frac{a^{-2}}{5 b^{-5}}=$
$\frac{(6 a)^{-2}}{b^{5}}=$

M9-3.4-Change of Base Negative Exponents HW

Change to positive exponents with lowest base.

Write with Positive Exponents
$8^{-2}=$
$\left(2^{3}\right)^{-2}$
$\stackrel{2}{2}^{2^{-6}}$
Change of Base
OR Multiply Exponents
Change of Base $O R$
Write with Positive Exponents
Multiply Exponents

$$
8^{-2}=0.015625=\frac{1}{2^{6}} \quad \text { Check Answer }
$$

Change to negative exponents with lowest base.

		Negative Laws
$\frac{1}{2}=$		1
1	Change of Base	$\frac{1}{2^{1}}=2^{-1}$
$\overline{2^{1}}$	Multiply Expon	
2^{-1}	Write with Pos	ive Exponents

$\frac{1}{81}=$	$\frac{1}{9}=\frac{1}{3^{2}}=3^{-2}$ $\frac{1}{3^{4}}$
Change of Base 3^{-4}	Negative Laws Multiply Exponents
Write with Positive Exponents	

$\left.\frac{\left(\frac{1}{25}\right)^{2}=}{} \frac{}{} \right\rvert\,$
Negative Laws
Multiply Exponents
OR
Change of Base
$\frac{25^{2}}{\left(5^{2}\right)^{2}}$
Change of Base
$\left(\frac{1}{25}\right)^{2}=$

Multiply Exponents Again Negative Laws

Change to positive exponents with lowest base.

$27^{-2}=$
$25^{-2}=$
$64^{-1}=$
$16^{-3}=$
$4^{-3}=$
$243^{-2}=$

Change to negative exponents with lowest base.
$\left(\frac{1}{9}\right)^{3}=$
$\left(\frac{1}{2}\right)^{-4}=$
$\left(\frac{4}{9}\right)^{-3}$

M9-3.5-Combo Exponents Laws HW

Simplify

$$
\frac{2^{3} \times 2^{5}}{2^{2}}=
$$

$$
\frac{4^{8} \times 2^{5}}{32}=\quad \frac{8^{3} \times 2^{10}}{256 \times 4^{2}}=
$$

$\frac{2^{8} \times 2^{-3}}{16}=$

$$
\frac{8^{-1} \times 32^{4}}{64^{-2}}=
$$

$$
\frac{2^{-1} \times 16^{-4}}{128^{-2}}=
$$

Simplify

$$
\frac{\left(6 x^{5} y^{2}\right)\left(5 x y^{3}\right)}{\left(2 x^{4} y^{2}\right)}=
$$

$$
\frac{\left(6 x^{5} y^{3}\right)^{-3}\left(4 x^{2} y^{4}\right)^{3}}{\left(2 x^{3} y\right)^{-2}}=
$$

M9-3.6-Exponents Negative Brackets Notes HW

Simplify without Brackets

$\left(-3 x^{2}\right)^{2}=$
$\left(-4 x^{-3}\right)^{3}=$

$$
\left(-7 x^{2}\right)^{-2}=
$$

$\left(-5 x^{3}\right)^{3}=$
$-\left(-4 x^{2}\right)^{4}=$
$-2\left(-5 x^{2}\right)^{-3}=$

Simplify without Brackets
$\left(\frac{4 x^{3}}{2 x^{2}}\right)^{5}=$
$\left(\frac{2 x^{5}}{7 x^{6}}\right)^{2}=$
$\left(\frac{1 x^{4}}{2 x^{3}}\right)^{-2}=$
$\left(\frac{8 x^{4}}{2 x^{2}}\right)^{5}=$
$\left(\frac{3 x^{5}}{5 x^{-2}}\right)^{3}=$
$\left(\frac{3 x^{-4}}{2 x^{3}}\right)^{-2}=$

