## M9 - 3.1 - Add/Subtract Exponents Laws Notes



Remember:

-Never multiply the base by the exponent -Must have same base to use laws.



Ultimately you will either use: Exponent Laws **OR** Repeated Multiplication and Division Theory

### M9 - 3.2 - Multiply Laws Notes



### M9 - 3.3 - Change of Base Notes

Change to Exponential Form (Change of Base)



8

#### **Change to Exponential Form with Lowest Bases**



 $8^{6} =$ 

49

=

 $2^{18}$ 

 $262144 = 64^3$ 

# M9 - 3.3 - Negative Coefficient Laws Notes

| Negative Coefficients<br>$-2^2 = -2^2 = -2 \times 2 = -4$<br>Negative numbers WITHOUT<br>brackets stay NEGATIVE  | Adding a<br>Negative In Front<br>$-(-2^2) = 4$ | Unnecessary brackets<br>$-(2)^2 = -4$<br>$(-2^2) = -4$ |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|
| $(-2)^3 = (-2) \times (-2) \times (-2) = -8$<br>Negative numbers with brackets to<br>ODD exponents stay NEGATIVE | $-(-2)^3 = 8$                                  |                                                        |
| $(-2)^4 = (-2) \times (-2) \times (-2) \times (-2) = 16$                                                         | $-(-2)^4 = -16$                                |                                                        |
| Negative numbers with brackets to<br>EVEN exponents become POSITIVE                                              |                                                |                                                        |

### M9 - 3.4 - Negative Laws Notes



# Theory



### M9 - 3.4 - Negative Laws Notes



$$\frac{5}{5^{-3}} = \underbrace{---}_{5^{-3}} = 5^{2} 5^{3} = 5^{2+3} = 5^{5} \qquad \text{Bring Up, Add}$$

$$OR$$

$$\frac{5^{2}}{5^{-3}} = 5^{2-(-3)} = 5^{5} \qquad \text{Subtract, Distribute Negative}$$

$$\frac{5^{-2}}{5^{3}} = \underbrace{----}_{5^{-2}} = \frac{1}{5^{3+2}} = \frac{1}{5^{5}} \qquad \text{Bring Down, Add}$$

$$OR$$

$$\frac{5^{-2}}{5^{3}} = \frac{1}{5^{3-(-2)}} = \frac{1}{5^{5}} \qquad \text{Subtract From Bottom}$$



$$\frac{2x^5y^{-2}}{z^{-3}} = \underline{\qquad} = \frac{2x^5z^3}{y^2}$$

When working with negative exponents:

Start with a fraction "Over" sign. Put anything not moved! Move whatever needs to be moved. If nothing is left on the top, put a 1.

### M9 - 3.5 - Combo Exponents Laws Notes



#### Simplify



| $\frac{y}{y^9} = y^{4-9} = y^{-5} = \frac{y}{y^5}$    | from Bottom          |
|-------------------------------------------------------|----------------------|
| $\frac{y^4}{y^9} = \frac{1}{y^{9-4}} = \frac{1}{y^5}$ | Subtract<br>from Top |

## M9 - 3.6 - Exponents Negative Brackets Notes

#### Simplify without Brackets





Multiply Exponents Simplify

#### **Simplify without Brackets**



#### Simplify without Brackets



= Flip it Make Exponent Positive  $\left(\frac{a}{b}\right)^{-c} = \left(\frac{b}{c}\right)^{c}$ 

25

Subtract Exponents

 $\chi^2$