M9-3.1 - Add/Subtract Exponents Laws Notes

Base $\longrightarrow 7^{2} \xrightarrow{\text { Exponent }}$| (power) |
| :--- |

Remember:
-Never multiply the base by the exponent -Must have same base to use laws.

Multiplying with the Same Base, Add Exponents

Dividing with the Same Base, Subtract Exponents.

Ultimately you will either use: Exponent Laws OR
Repeated Multiplication and Division Theory

$\left(5^{4}\right)^{2}=(5 \times 5 \times 5 \times 5)^{2}=(5 \times 5 \times 5 \times 5) \times(5 \times 5 \times 5 \times 5)$
$\left(5^{4}\right)^{2}=5^{4 \times 2}=5^{8}$

When Product/Quotients to Exponents, Multiply Exponents

M9-3.3 - Change of Base Notes

Change to Exponential Form (Change of Base)

Change to Exponential Form with Lowest Bases

(3)

Perfect Squares 1,4,9,16,25,36,49,64,81...

$$
\frac{18}{4}-4.5 \quad \frac{18}{9}=2
$$

OR
Divide by Perfect Squares/Cubes

Perfect Cubes
1,8,27,64,125,216,343...
$\frac{54}{4}=13.5 \quad \frac{54}{27}=2$

Change to Exponential Form with Lowest Bases
4^{3}
6^{3}

Write as Product (\times)
Write Exponents (1's)
Multiply Exponents

M9-3.3-Negative Coefficient Laws Notes

Negative Coefficients $-2^{2}=-2^{2}=-2 \times 2=-4$ Negative numbers WITHOUT brackets stay NEGATIVE	Adding a Negative In Front $-\left(-2^{2}\right)=4$	Unnecessary brackets $\begin{aligned} & -(2)^{2}=-4 \\ & \left(-2^{2}\right)=-4 \end{aligned}$
$(-2)^{3}=(-2) \times(-2) \times(-2)=-8$ Negative numbers with brackets to ODD exponents stay NEGATIVE	$-(-2)^{3}=8$	
$(-2)^{4}=(-2) \times(-2) \times(-2) \times(-2)=16$	$-(-2)^{4}=-16$	
Negative numbers with brackets to EVEN exponents become POSITIVE		

Negative Exponents
$5^{-2}=\frac{1}{5^{2}}$

$5^{-2}=0.04=\frac{1}{5^{2}} \quad$ Check Answer
$\frac{1}{3^{-2}}=\left(\frac{3^{2}}{1}\right.$

> Bring to the top, make exponent positive

Bring to the bottom, make exponent positive
$3^{-3} a^{-2}=\frac{1}{3^{3} a^{2}}=\frac{1}{27 a^{2}} \quad$ Bring to the bottom, make exponent positive
$(2 x)^{-3}=\frac{1}{(2 x)^{3}}=\frac{1}{2^{3} x^{3}}=\frac{1}{8 x^{3}}$ Bring to the bottom, make exponent positive
$\frac{2}{(3 x)^{-2}}=$
2(3x $)^{2} \quad$ Bring to the top, make exponent positive
2($3^{2} x^{2}$) Multiply Exponents
2($9 x^{2}$)
$18 x^{2}$ Multiply Coefficients

Theory

Theory on "Bring it to the Bottom" and Vice Versa

The exponents on the left are going down by 1 ,

The numbers on the right are being divided by 3 ,

This pattern must continue

$$
\frac{3^{2}}{3^{2}}=3^{2-2}=2^{0}=1 \quad \frac{3^{2}}{3^{2}}=\frac{8}{8}=1
$$

$$
\frac{3}{9}=\frac{3 \div 3}{9 \div 3}=\frac{1}{3} \quad \frac{3}{3^{2}}=\frac{1 \not p}{\not 2 \times 3}=\frac{1}{3}
$$

$$
\frac{3^{1}}{3^{2}}=3^{-1}=\frac{1}{3^{1}}=\frac{1}{3} \quad \frac{\neq 1}{\beta}=1
$$

Fractions Division Theory vs Exponents

Negative Exponents

Multiply Exponents
Start off with an "OVER"
Bring to the bottom, make exponent positive
Bring to the top, make exponent positive
When you can flip it!
$\left(\frac{5}{3}\right)^{-2}=\left(\frac{3}{5}\right)^{2}=\left(\frac{3^{2}}{5^{2}}\right)$
Flip it and make the exponent positive

Alternate Subtraction Methods OR

OR

$$
\frac{5^{2}}{5^{5}}=5^{2-5}=5^{-3}=\frac{1}{5^{3}}
$$

Subtract from the top

Division Theory

$$
\frac{5^{2}}{5^{5}}=\frac{1}{5^{5-2}}=\frac{1}{5^{3}}
$$

Subtract from the bottom

$$
\frac{5^{2}}{5^{5}}=0.008=\frac{1}{5^{3}} \quad \int \text { Check Answer } \quad \frac{5^{2}}{5^{5}}=\frac{25 \div 25}{3125 \div 25}=\frac{1}{125}=\frac{1}{5^{3}} \quad \begin{aligned}
& \text { Division } \\
& \text { Theory }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{5^{2}}{5^{-3}}=-\ldots=5^{2} 5^{3}=5^{2+3}=5^{5} \quad \text { Bring Up, Add } \\
& \frac{5^{2}}{5^{-3}}=5^{2-(-3)}=5^{5} \quad \text { Subtract, Distribute Negative } \\
& \frac{5^{-2}}{5^{3}}=\ldots=\frac{1}{5^{3} 5^{2}}=\frac{1}{5^{3+2}}=\frac{1}{5^{5}} \quad \text { Bring Down, Add } \\
& \frac{\mathrm{OR}}{\frac{5^{-2}}{5^{3}}=\frac{1}{5^{3-(-2)}}=\frac{1}{5^{5}} \quad \text { Subtract From Bottom }}
\end{aligned}
$$

Step 1
 \leftarrow Over

When working with negative exponents:

Start with a fraction "Over" sign.
Put anything not moved! Move whatever needs to be moved.
If nothing is left on the top, put a 1.

M9-3.5-Combo Exponents Laws Notes

Simplify

Simplify

$$
\begin{array}{cl}
\frac{\left(2 x^{3} y^{2}\right)\left(6 x y^{4}\right)}{\left(4 x^{3} y\right)}= & \\
\frac{12 x^{4} y^{6}}{4 x^{3} y} & \begin{array}{l}
\text { Multiply Coefficients } \\
\text { Add Exponents } \\
\text { Divide }
\end{array} \\
3 x y^{5} & \begin{array}{l}
\text { Subtract Exponents }
\end{array}
\end{array}
$$

$$
\begin{array}{ll}
\frac{\left(8 x^{3} y^{2}\right)^{2}\left(6 x y^{4}\right)^{-2}}{\left(4 x^{3} y\right)} & \\
\frac{\left(8 x^{3} y^{2}\right)^{2}}{\left(4 x^{3} y\right)\left(6 x y^{4}\right)^{2}} & \text { Negative Exponents } \\
\frac{64 x^{6} y^{4}}{\left(4 x^{3} y\right)\left(36 x^{2} y^{8}\right)} \\
\frac{64 x^{6} y^{4}}{144 x^{5} y^{9}} & \begin{array}{l}
\text { Multiply Exponents } \\
\text { Multiply Coefficients } \\
\text { Add Exponents } \\
\text { Subtract Exponents }
\end{array} \\
\frac{4 x}{9 y^{5}} & \begin{array}{ll}
\text { Simplify }
\end{array} \\
\begin{array}{ll}
\frac{y^{4}}{y^{9}}=y^{4-9}=y^{-5}=\frac{1}{y^{5}} & \begin{array}{l}
\text { Subtract } \\
\text { from Bottom }
\end{array} \\
\frac{y^{4}}{y^{9}}=\frac{1}{y^{9-4}}=\frac{1}{y^{5}} & \begin{array}{l}
\text { Subtract } \\
\text { from Top }
\end{array}
\end{array}
\end{array}
$$

Simplify without Brackets

$(-2 x)^{2}=$	
$\left((-2)^{1} x\right)^{2}$	Multiply Exponents
$(-2)^{2} x^{2}$	$(-2)^{\text {even }}=+$ eve $(-2)^{2}=4$

$\left(-2 x^{2} y^{3}\right)^{3}$	
$(-2)^{3} x^{6} y^{9}$	Multiply Exponents
$-8 x^{6} y^{9}$	Simplify

Simplify without Brackets

$(-2 x)^{-2}=$

$$
\frac{1}{(-2 x)^{2}}
$$

Negative Exponents

Multiply Exponents

Simplify

$$
\begin{aligned}
& \left(\frac{5 x}{-2 x^{2}}\right)^{-2}= \\
& \bigcirc R\left(\frac{5 x}{-2 x^{2}}\right)^{-2}= \\
& \frac{5^{-2} x^{-2}}{(-2)^{-2} x^{-4}} \quad \text { Multiply Exponents } \\
& \text { —— Start off with "OVER } \\
& \frac{(-2)^{2} x^{4}}{5^{2} x^{2}} \quad \text { Negative Exponents } \\
& \frac{4 x^{4}}{25 x^{2}} \\
& \frac{4 x^{2}}{25} \\
& 4-2=2 \\
& \text { Subtract Exponents } \\
& (-2)^{2}=4 \\
& \begin{array}{c}
\left(\frac{-2 x^{2}}{5 x}\right) \\
\frac{2^{2} x^{4}}{5^{2} x^{2}}
\end{array} \\
& \frac{4 x^{4}}{25 x^{2}} \\
& \frac{4 x^{2}}{25}
\end{aligned}
$$

