The following diagrams are made out of toothpicks. Create a Table of Values.

$n=1$
$n=1 \quad n=2$

Let Statements

Let $n=$ the diagram number
Let $t=$ the number of toothpicks

$n=3$

Find the number of toothpicks of the 4th and 5th diagram. $(n=4,5)$ Then $n=0$.

Words Problems

1) Let Statements
2) Table of Values
3) Equation (Logic)
4) Substitute
5) Solve (Algebra)
6) Answer in English!
7) Check Answer!

Find the Equation of the Table (TOV)
$t=n+3 \quad$ Try for $n=1$

$t=4 n$ See if pattern works
for $n=2,3$...
$t=2 h+2$ If not cross it off

How many toothpicks in the 10th diagram?

$$
n=10
$$

$t=3 n+1$	Start with Equation
$t=3(10)+1$	Substitute
$t=30+1$	Solve

Which diagram has 37 toothpicks?

	$t=37$
$\begin{aligned} t & =3 n+1 \\ \text { (37) } & =3 n+1\end{aligned}$	Start with Equation
(37) $=3 n+1$	Substitute
$-1-1$	Solve
$36=3 n$	
$\frac{36}{3}=\frac{3 n}{3}$	The 12th
$12=n$	diagram has 37

Find the equation from the Table of Values (TOV).
Right Letter $=1,2,3$ Letter

n	t	$t+3 n$	1) Try for $n=1$ (Logic) 2) See if pattern works for $n=2,3$... by Substitution 3) If not cross it off 4) Repeat until works for all n.		
1	3				
2	4				
3	5				
Check Answer		Do this in your head!		Substitute with Brackets	
$\left.\begin{array}{cc} t=3 n & t \\ (3)=3(1) \\ \hline 3=3 \end{array} \begin{array}{c} (4) \neq 3(2) \\ 3 \end{array}\right) \neq 3 \begin{aligned} & \text { (1) } \end{aligned}$			$\begin{aligned} t & =n+2 \\ (3) & =(1)+2 \\ 3 & =3 \end{aligned}$	$t=n+2$	$t=n+2$
			$(4)=(2)+2$	$(5)=(3)+2$	

$$
\begin{gathered}
\text { As Blanks } \\
\frac{3}{\text { Term } 1,2,3}, \frac{4}{2}, \frac{5}{n=3},-\frac{t=4}{n=2}, \frac{t=5}{n=3} \\
\frac{t=3}{n=1},
\end{gathered}
$$

Right Letter $=\frac{\text { Change on Right letter }}{\text { Change in Left letter }}$ Left Letter \pm Value of Right Letter when Left Letter $=0$

Complex Patterns (Curves)	n	t	n	t	n	t_{n}	n	t_{n}
	1	2	1	1	1	0	1	1
	2	5	2	8	2	2	4	2
	3	10	3	27	3	6	9	3
	$t=n^{2}+1$				$t=n^{2}-n$			

