						Tran	sitive Prope	erty:]		
F11 - 1.0	- Reas	onin	g Rev	iew		A = B	$B = C \rightarrow$	A = C			
Statements:	Statements: <u>Let:</u> $Rains = p$ Sky is $Grey = q$										
Conditional: An '	'if-then" st	atement			Нуро	othesis	Conclusio	on			
(1	If it "ra	ains," the	n the "sky	y is grey."	If	"p" -> tł	nen "q"		$p \rightarrow q$		
Converse: A co	onditional s	tatemen	t where t	he <u>hypothesis</u> and the	<u>conclus</u>	sion are	<u>switched</u> .				
If the "sky is grey," then it "rains." If "q" -> then "p" $q \rightarrow p$ Inverse: Formed by negating both the hypothesis and the conclusion of a conditional statement											
Inverse: Formed by <u>negating</u> both the hypothesis and the conclusion of a <u>conditional statement</u> . If it does "NOT rain," then the "sky is NOT grey." If NOT "p" -> then NOT "q" $\bar{p} \rightarrow \bar{q}$											
	If it do	es "NOT	rain," ther	n the "sky is NOT grey.	" If	NOT "p'	" -> then N(OT "q" 1	$\bar{\sigma} \to \bar{q}$		
Contrapositive: Fo	ormed by <u>r</u>	negating	both the l	nypothesis and the cor	nclusion	n of the <u>c</u>	<u>converse</u> .				
	If the "	sky is NC)T grey," t	hen it does "NOT rain.	" If	NOT "q"	-> then NC	ОТ "р"	$\bar{q} \rightarrow \bar{p}$		
Biconditional: An "	if and only	if" state	ment.								
	It "rains	" if and o	nly if "the	e sky is grey"		"p" if ar	nd only if "a	ı" p <	<-> q		
			-			•			lies "q"		
Truth Tables								<i>pp</i>			
$\begin{array}{ c c c } p & q \\ \hline T & T \\ \hline F & F \\ \hline F & T \\ \hline T & F \\ \end{array}$	$p \rightarrow q$ $p \cap q$ $p \cup q$ T T T T T T F T										
2 + 2 = 4 2 Counterexample: 2 + 3 = 5 2		Addition Addition Addition Addition	on and Mu validates a Conclu	t proved. (A Hypothesi ultiplication are the sar a conjecture (Add and usion: The result of a h a statement is valid in	me thin Multipl hypothe	g y are the sis					
Inductive Reasoning: Drawing a general conclusion by observing patterns and identifying properties in specific examples. 1 + 1 = 2 1 + 2 = 3 Adding two numbers equals a larger number. False! Deductive Reasoning: Drawing a specific conclusion through logical reasoning by starting with											
general assumptio	Deductive Reasoning: Drawing a specific conclusion through logical reasoning by starting with general assumptions that are known to be valid. Eyes All dogs are mammals Mammals have eyes Dogs have eyes. True!										

49566.56 – 9791.88 \$39774.68 Yearly income after tax

F12 - 1.0 - Simple/Compound Interest Notes \$

	$ \underbrace{I = Prt}_{I = 1000 \times 0.1 \times 1} \text{ Two Step}_{F = 1000 + 100} \underbrace{F = 1000}_{One \text{ Step}} \underbrace{F = 1100}_{F = 1100} \underbrace{F = 1100}_{F = 1100 + 1000(0.1)(1)} \underbrace{F = 1100}_{F = 1100} $	Compounded yearly $F = P(1 \pm r)^{t}$ $F = 1000(1 + 0.1)^{1}$ $F = P + Prt$ $F = P(1 + rt)$ $F = P(1 + rt)$	34 Apps Fin TVM N: 1×1 $I\%$: 10 PV : -1000 PMT : 0 FV : 1100 P/Y : 1 C/Y : 1
24 months at 10%.	$ \underbrace{\frac{\text{Simple}}{I = Prt}}_{\substack{I = 1000 \times 0.1 \times 2 \\ = 200}} F = P + I \\ F = 1000 + 200 \\ F = 1200 \\ F = 12$	$F = P\left(1 \pm \frac{r}{n}\right)^{tn}$ $F = 1000\left(1 + \frac{0.1}{12}\right)^{2 \times 12}$ $F = 1220.39$ Interest on Interest! Note:	$ \begin{array}{rcl} N. & 12 \times 2 \\ I\%: & 10 \\ PV: & -1000 \\ PMT: & 0 \\ FV: & 1220.39 \\ P/Y: & 12 \\ C/Y: & 12 \end{array} $
6 months at 10%.	$I = Prt I = 1000 \times 0.1 \times \frac{1}{2} \qquad F = P + I F = 1000 + 50 F = 1050$	$F = P \left(1 \pm \frac{r}{n}\right)^{tn}$ $F = 1000 \left(1 + \frac{0.1}{4}\right)^{\frac{1}{2} \times 4}$ $F = 1000(1.050625)$ $F = 1050.63$	N: $12 \times 1/2$ I%: 10 PV: -1000 PMT: 0 FV: 050.63 P/Y: 4 C/Y: 4
Find the Present Value of a \$1000 Investment in 1 year at 10%	$F = P + Prt \qquad F = P(1 \pm r)$ $1000 = P + P(0.1)(1) \qquad 1000 = P(1 + 0)$ $1000 = P + .1P \qquad 1000 = P(1.1)$ $1000 = 1.1P \qquad P = 909.09$ $1.1 \qquad P = 909.09$	$(1)^t I\%: 1\times 1$ I%: 10	
2 years at 10%	$F = P + Prt F = P(1 \pm r)$ $1000 = P + P(0.1)(2) 1000 = P(1+0)$ $1000 = P + .2P 1000 = P(1.21)$ $1000 = 1.2P P = 826.45$ $1000 = P$ $P = 833.33$	$(1.1)^2$ $I\%:$ 10	

F12 - 1.0 - Simple/Compound Interest Notes (Time!)

How long does it take for your money to double at 10%. F = P + Pr $2 = 1 + 1(0)$ $t = 20$ $T = 20$	1)t $2 = 1(1 + 0.1)^{t}$ $2 = 1.1^{t}$ $y_{1} = 2$ $y_{2} = 1.1^{t}$ Find Intersection	N: 7.27 I%: 10 PV: 1 PMT: 0 FV: 2 P/Y: 1 C/Y: 1	
Doubling Time = $\frac{r^2}{r}$ 10	Compounded quarterly $F = P \left(1 \pm \frac{r}{n}\right)^{tn}$ $2 = 1 \left(1 + \frac{0.1}{4}\right)^{t \times 4}$ $2 = 1.0825^{4t}$ $y = 2 \qquad y = 1.015^{4t}$ $t = 7.02$	N: 28.07 I%: 10 PV: -1 PMT: 0 FV: 2 P/Y: 4 C/Y: 4	$ \begin{array}{r} \underline{N = nt} \\ 28.07 = 4t \\ \hline t = 7.02 \end{array} $ $ \overline{n = \frac{comp}{year}} $
Find the Interest $F = P$ Rate of a \$1000 PV $1500 = 10$ Investment to a FV $500 = 1$ of \$1500 in 1/2 $1 = 0$ Year/s. $r = 50$	$\begin{array}{ccc} 000 + 1000r(1) & 1500 = 10\\ 000r & 1.5 = 1 \\ 5 & r = 0.5 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ + \\ r \\ 0 \\ 0 \\ \end{array} $	6: 50 7: -1000 MT: 0
F = P $1500 = 10$ $500 = 2$ $1 = 0$ $r = 2$	1500 = 1000 $1500 = 100$ $1.5 = (1)$ $1.2247 = 1 - r = 0.1$	$(1+r)^{2})^{\frac{1}{2}} $ $(1+r)^{2})^{\frac{1}{2}} $ $(1+r)^{2})^{\frac{1}{2}} $ $(1+r)^{2} $	

F12 - 1.0 - Payments Notes

Find the Future Value of 3 payments of \$100 at the end of each year for 3 Years at 10% compounded yearly.

Find the Future Value of \$100 payments at the end of each month for 1 Year at 10% compounded monthly.

Months	11	10	9	8	7	6	5	4	3	2	1	0
F=P(1+r)^t	109.56	108.65	107.75	106.86	105.98	105.11	104.24	103.38	102.52	101.67	100.83	100.00
r=0.1/12	0.008										FV= (1256.56

F12 - 1.0 - Payments Notes

How long to pay off a loan of \$2000 at 10% compounded weekly with payments of \$100 per month.

Find the monthly payment to pay off a \$10000 loan in 4 years at 10% compounded semi-annually.

N: (21.97)	N = nt 1.83 × 12 = 21.97	N: 12×4
<i>I</i> %: 10	21.97 = 12t	<i>I</i> %: 10
PV: -2000	t = 1.83 21.97 = 22 Months	PV: -10000
<i>PMT</i> : 100		PMT: 252.66
FV: 0	$n = \frac{pay}{pay}$	FV: 0
<i>P/Y</i> : 12	$n = \frac{1}{vear}$	<i>P/Y</i> : 12
<i>C</i> / <i>Y</i> : 52	2	C/Y: 2

Find the monthly payment to pay off a \$10000 loan in 1 year at 10% compounded monthly.

 $\begin{array}{rrrr} N: & 12 \times 1 \\ I\%: & 10 \\ PV: & -10000 \\ PMT: & 879.16 \\ FV: & 0 \\ P/Y: & 12 \\ C/Y: & 12 \end{array}$

Months	0	1	2	3	4	5	6	7	8	9	10	11	12
F=P(1+r)^t	10000	10080	9274	8462	7644	6819	5987	5149	4304	3452	2594	1728	856
r=0.1/12	Payment	879	879	879	879	879	879	879	879	879	879	879	879
0.008		9201	8395	7583	6765	5940	5108	4270	3425	2573	1714	849	-23