F11-1.0 - Reasoning Review

Statements: \quad Let: \quad Rains $=p \quad$ Sky is Grey $=q$

Conditional: An "if-then" statement.
Hypothesis Conclusion
If it "rains," then the "sky is grey." If " p " -> then "q" $\quad \mathrm{q} \rightarrow q$
Converse: A conditional statement where the hypothesis and the conclusion are switched.
If the "sky is grey," then it "rains." \quad If "q" -> then "p" $\quad q \rightarrow p$

Inverse: Formed by negating both the hypothesis and the conclusion of a conditional statement.

$$
\text { If it does "NOT rain," then the "sky is NOT grey." If NOT "p" -> then NOT "q" } \bar{p} \rightarrow \bar{q}
$$

Contrapositive: Formed by negating both the hypothesis and the conclusion of the converse.

$$
\text { If the "sky is NOT grey," then it does "NOT rain." } \quad \text { If NOT " } q \text { " -> then NOT " } \mathrm{p} \text { " } \bar{q} \rightarrow \bar{p}
$$

Biconditional: An "if and only if" statement.
It "rains" if and only if "the sky is grey" \quad "p" if and only if "q" $p<->q$

Truth Tables

p	q	$p \rightarrow q$	$p \cap \mathrm{q}$	$p \cup \mathrm{q}$
T	T	T	T	T
F	F	T	F	F
F	T	T	F	T
T	F	F	F	T

A conditional statement is false only when :

- The hypothesis is true and
- The conclusion is false.

Otherwise :

- The conditional statement is true (even if the hypothesis is false.)

Conjecture: A opinion or conclusion but not yet proved. (A Hypothesis if Testable)

$$
2+2=4 \quad 2 \times 2=4 \quad \text { Addition and Multiplication are the same thing }
$$

Counterexample: An example that invalidates a conjecture (Add and Multiply are the same thing.)

$$
2+3=5 \quad 2 \times 3=6 \quad \text { False! Conclusion: The result of a hypothesis }
$$

Proof: A mathematical argument showing that a statement is valid in all cases. (Conjecture ->Proof)
Inductive Reasoning: Drawing a general conclusion by observing patterns and identifying properties in specific examples.

$$
1+1=2 \quad 1+2=3 \quad \text { Adding two numbers equals a larger number. False! }
$$

Deductive Reasoning: Drawing a specific conclusion through logical reasoning by starting with general assumptions that are known to be valid.

All dogs are mammals
Mammals have eyes
Dogs have eyes. True!

Federal/
Provincial
Table/\%
Periods!

Gross Income \$ 49566.56 Yearly

El	EI	
1.63\%, max \$61500	$49566.56 \times 0.0163=807.93$ Yearly EI	$1.63 \div 100=0.0163$
Employer pays 1.4 times	$807.93 \div 12=67.33$ Monthly EI	
		Changes every year
CPP		
5.95\% over 3500 (Yearly)	CPP	$5.95 \div 100=0.0595$
Employer matches amount	$49566.56-3500=46066.56$ Amount to be taxed.	
Max CPP=3754.45/Year	$46066.56 \times 0.0595=2740.96$ Yearly CPP amount	
(Self employed pays double)	$2740.96 \div 12=228.41$ Monthly CPP amount	
Federal Tax (Table)		So you don't have to use the table.
$49566.56 \div 12=4130.55:$ Monthly Income		
Claim code 1 (369.40)Federal monthly tax		\% Rate
		$\begin{array}{l\|l} -\quad \text { 2nd Bracket ... } \\ \text { \% Rate } \end{array}$
Provincial Tax (Table)		- 1st Bracket
		\% Rate
Claim code 1 :150.85): Provincial monthly tax		- \$0

$228.41+67.33+369.40+150.85=815.99$. Total monthly tax
$815.99 \times 12=9791.88$ Total yearly Tax
$49566.56-9791.88=\$ 39774.68$ Yearly income after tax

F12-1.0 - Finance Review

F12-1.0-Simple/Compound Interest Notes \$

Compounded quarterly $n=4$

		Compounded yearly	$\mathrm{N}: 1 \times 1$
Find the Present	$F=P+P r t$	$F=P(1 \pm r)^{t}$	I\%: 10
Value of a \$1000	$1000=P+P(0.1)(1)$	$1000=P(1+0.1)^{1}$	$P V:-909.09$
Investment in	$1000=P+.1 P$	$1000=P(1.1)$	PMT: 0
	$1000=1.1 P$	- $=909.09$	FV: 1000
	$\frac{1000}{11}=P$		P/Y: 1
1 year at 10\%	$\stackrel{1.1}{P=909.09}$		$C / Y: 1$
2 years at 10\%	$F=P+P r t$	$F=P(1 \pm r)^{t}$	N : 1×2
	$1000=P+P(0.1)(2)$	$1000=P(1+0.1)^{2}$	I\%: 10
	$1000=P+.2 P$	$1000=P(1.21)$	$P V:-826.45$
	$1000=1.2 P$	$P=826.45$	PMT: 0
	1000		$F V: 1000$
	$1.2=P$		$P / Y: 1$
	$P=833.33$		$C / Y: 1$

F12-1.0-Simple/Compound Interest Notes (Time!)

How long does it take for your money to		Compounded yearly
	$F=P+P r t$	$F=P(1 \pm r)^{t}$
	$2=1+1(0.1) t$	$2=1(1+0.1)^{t}$
	$t=20$	$2=1.1^{t}$
		$y_{1}=2 \quad y_{2}=1$.

Find Intersection

$N:$	7.27)
$I \%:$	10
$P V:$	1
$P M T:$	0
$F V:$	2
$P / Y:$	1
$C / Y:$	1

Compounded quarterly

$$
\begin{gathered}
F=P\left(1 \pm \frac{r}{n}\right)^{t n} \\
2=1\left(1+\frac{0.1}{4}\right)^{t \times 4} \\
2=1.0825^{4 t} \\
y=2 \quad y=1.015^{4 t} \\
t=7.02
\end{gathered}
$$

$N:$	28.07
$I \%:$	10
$P V:$	-1
$P M T:$	0
$F V:$	2
$P / Y:$	4
$C / Y:$	4

$N=n t$ $28.07=4 t$
$t=7.02$
$n=\frac{\text { comp }}{\text { year }}$

Find the Interest
Rate of a $\$ 1000$ PV

$$
\begin{array}{rlrl}
F & =P+P r t & A & =P(1 \pm r)^{t} \\
1500 & =1000+1000 r(1) & 1500 & =1000(1+r)^{1} \\
500 & =1000 r & 1.5 & =1+r \\
1 & =0.5 & r & =0.5 \\
r & =50 \% & r & =50 \%
\end{array}
$$

Investment to a FV of $\$ 1500$ in $1 / 2$
Year/s.

$N:$	1×1
$I \%:$	50
$P V:$	-1000
$P M T:$	0
$F V:$	1500
$P / Y:$	1
$C / Y:$	1

$$
\begin{array}{rlrl}
F & =P+P r t & A & =P(1 \pm r)^{t} \\
1500 & =1000+1000 r(2) & 1500 & =1000(1+r)^{2} \\
500 & =2000 r \\
1 & =0.25 \\
r & =25 \% & \begin{array}{l}
\text { Reciprocal } \\
\text { Exponent }
\end{array} & =(1+r)^{2} \\
(1.5)^{\frac{1}{2}} & =\left((1+r)^{2}\right)^{\frac{1}{2}} \\
1.2247 & =1+r \\
r & =0.2247
\end{array}
$$

$$
N: \quad 1 \times 2
$$

$$
I \%: \quad 22.47
$$

$$
P V: \quad-1000
$$

$$
\text { PMT: } 0
$$

$$
F V: \quad 1500
$$

$$
P / Y: \quad 1
$$

$$
C / Y: \quad 1
$$

F12-1.0-Payments Notes

Find the Future Value of 3 payments of $\$ 100$ at the end of each year for 3 Years at 10% compounded yearly.

Find the Future Value of $\$ 100$ payments at the end of each month for 1 Year at 10% compounded monthly.
N: $\quad 12 \times 1$
I\%: 10
PV: 0
$F=\frac{P\left(\left(1+\frac{r}{n}\right)^{t n}-1\right)}{\frac{r}{n}}$
PMT: 100
$F V:-1256.56$
$P / Y: 12$
C/Y: 12

Months	11	10	9	8	7	6	5	4	3	2	1	0
$\mathrm{~F}=\mathrm{P}(1+r)^{\wedge} \mathrm{t}$	109.56	108.65	107.75	106.86	105.98	105.11	104.24	103.38	102.52	101.67	100.83	100.00
$\mathrm{r}=0.1 / 12$	0.008										$\mathrm{FV}=$	1256.56

F12-1.0-Payments Notes

How long to pay off a loan of \$2000 at 10\% compounded weekly with payments of $\$ 100$ per month.

$N:$	21.97	$N=n t$	$1.83 \times 12=21.97$
$I \%:$	10	$21.97=12 t$	$21.97=22$ Months
$P V:$	-2000	$t=1.83$	
$P M T: 100$			
$F V:$	0	$n=\frac{\text { pay }}{\text { year }}$	
$P / Y:$	12		
$C / Y:$	52		

Find the monthly payment to pay off a \$10000 loan in 4 years at 10% compounded semi-annually.
$N: \quad 12 \times 4$
I\%: 10
PV: $\quad-10000$
PMT: 252.66
FV: 0
$P / Y: 12$
$C / Y: 2$

Find the monthly payment to pay off a $\$ 10000$ loan in 1 year at 10% compounded monthly.
$N: \quad 12 \times 1$
I\%: 10
PV: -10000
PMT: 879.16
$F V: 0$
$P / Y: 12$
$C / Y: 12$

| Months | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | ---: |
| $\mathrm{~F}=\mathrm{P}(1+\mathrm{r})^{\wedge} \mathrm{t}$ | 10000 | 10080 | 9274 | 8462 | 7644 | 6819 | 5987 | 5149 | 4304 | 3452 | 2594 | 1728 | 856 |
| $\mathrm{r}=0.1 / 12$ | Payment | 879 | 879 | 879 | 879 | 879 | 879 | 879 | 879 | 879 | 879 | 879 | 879 |
| 0.008 | | 9201 | 8395 | 7583 | 6765 | 5940 | 5108 | 4270 | 3425 | 2573 | 1714 | 849 | -23 |

