Math 11 HW Sheets

Knack Academics

Nicholas Cragg
Knack Publishing
www.knackacademics.com
nick@knackacademics.com
604.505.2867

Find missing	terms of the	sequence.										
		3040000										
2, 4, 6	,	, <u> </u>	,	_				-2,				
					,		,	_,		,		
8, 14, 2	0											
0, 14, 2	o,	,	,	- -:	7,		_	3,	_			
11, 6,	1,,	,	-	, _								
				7	•		, _		-3	2,	/	
2, -4, -1	0,,			_								
				4,		,		,	25	, _	,	
-8, -5, -	2,,			_								
	_											
$\frac{1}{2'}$ $\frac{3}{2'}$	<u>5</u>		,	_								
				13	\						81	
0.22 0.24	0.25							,			01	
0.33, 0.34,	0.35,											
1 1												
$\frac{1}{2}$, $\frac{1}{4}$,	0,	,	·									
				Sol	ve fo	r x, an	d mis:	sing t	erms			
x, x + 1, x +	2,	,	,	$- \mid x \mid$	- 1, 3:	x - 1,	2x +	3,		<u></u>	,	
										3,5,7	, x=2	
		, 8,	. 10,	12								
5,	_	20,	25,									
,		_==,										
_		_		2x	+ 2,			7 <i>x</i> -			x + 5,	
2,		_, 8,	10,						8,	12,16,	20 x=3	
2,	,	, -4,	-6,			2	_	-	2			
				x^2	- 12,	$x^2 - 1$	2x + 2	2, $2x$			x = -	
5,	, 17,								13,	17,31 4,10,1	x = 6	4
2,	, -8,											

		rithmetic fi							
Circl	e the first tern	n, write $t_1=$, and fi	nd the comi	mon difference	e, twice	· .		
				_		0.14	20.26.22		
(1)	3, 5, 7,		, 7, 11, 1	15,		8, 14,	20, 26, 32		
t	$t_1 = 1$	t	=						
d	d = 3 - 1 = 2 d = 5 - 3 = 2) (d = d = d = d						
d	l = 5 - 3 = 2) (d =						
10	, 8, 6,		3, -1, -	5,		5, 2.5,	, 0,		
12	2, 17, 22, 27, 3	2 –	-10, -12	2, -14, -16	5,-18	14, 19	, 24, 29, 34		
	1 3 5		9 7 5						
_	$-\frac{1}{2}, -\frac{3}{2}, -\frac{5}{2},$		$\frac{3}{2}$, $\frac{3}{2}$, $\frac{3}{2}$			27, 13	, -1,		
2,	, 3, 4, 5, 6		-3, -5,	-7, -9, -1	1	5, 11	, 17, 23, 29		
9,	, 12, 15, 18, 21		16, 21, 2	6,31,36		030	.31, 0.32, 0.	33	
						0.5, 0	.51, 0.52, 0.	33,	

C1 :	1 - 1.	1 - A	rithr	neti	с Ме	ans	HW										
		st 5 ter															
	2, d =						=4,d	= -3					$t_1 = -$	-4, d =	= 5		
						_											
$t_1 =$	-7, t ₃	= 3								<i>t</i> ₁ =	5, t ₃ =	= 15					
$t_1 = 2$	$2, t_4 =$	-4							t ₁ =	= 7, t ₄	= -3	2					
_	12 +	_ 01								+ -	2r _ 9	? <i>†</i> —	3x - 3	2			
ι_1 —	13, t_5	- 01								<i>c</i> ₁ –		,, ,, ,	J	_			
											6,1	3,19,2	c = 7				

C11 - 1.1	- Arithmetic I	Means HW			
Find t_1 and d					
$t_2 = 2, t_3 = 4$			$t_2 = 15, t_3 = 20$	0	
$t_2 = 2, t_4 = -$	8		$t_2 = 8, t_4 = -32$	2	
$t_2 = 2, t_5 = -$	-13		$t_2 = 3, t_6 = 23$		
$t_3 = 4, t_{10} = 3$	39		$t_3 = 3, t_{12} = -1$	527	

C	11 - 1.1 - /	Arithmetic	Sequenc	ces WS				
	+ + _		2	2				
	$\frac{3}{2}$, $\frac{5}{t_2}$	$\begin{array}{ccc} & ? \\ \hline & 7 \\ \hline & t_3 \\ & 1 = 3 \end{array}$, <u>'</u>	$\frac{t_n}{t_n}$				
$n \stackrel{\mathcal{E}}{=}$	$\frac{1}{n} = 1$ $n = 2$ $n = 2$	1 = 3	n	= n				
t_1 =	=							
	$= t_n - t_{n-1}$		$d = t_n$	$-t_{n-1}$				
d =		d =		<i>n</i> 1				
			A!±la a.	4: a. alaat ala				
			Arithme	uc: a must al	ways be the			
1.	Find the Gene	$eral\ term\ t_n=$?					
			$t_n = t_1$	+(n-1)d				
			The Cir		1. 11.1:00			
			I ne ju	rst term plu	s'n - 1' diffe	erences		
W	hat is the ten	th term t ₁₀ ?						
t_n	_					Or, Start fr	om beginning	
n			General term	formula				
			Remember: \					
			the common Term 3 (t_3)	difference 7	times to			
			Check you	r answer: 3,5	5,7,			
31	is what terr	$n, t_n = 31, n =$	=?					
i	$t_n =$							
			Check	your answer	: 3,5,7,			

C11	- 1.1	1 - A	rithr	neti	c Ge	nera	al Te	rm. i	nth	term	s H\	N					
	he Ger						8th ter						63	:- 4	(2		
	7,			5		the I	our ter	18	_,	Fina	out w	vnat te	erm 63	is. t_n	= 63.		
				,													
$t_1 =$																	
		d	=														
$t_n =$	$t_1 + ($	(n-1)	d														
Find th	e Gen	eral tei	rm.		Find 1	the 12	th terr	n. t_{12}	=?	Fin	d out	what t	erm 4	9 is. t_n	= 49		
4,	9,	14,															
Find the	Gene	ral teri	m.		Find tl	ne 20t	h term	. t20 =	- ?	Find	out w	uhat te	rm 61	ic t	= 64.		
7,								- 20		11110	out v	riiac co	04	is. c _n	_ 01.		
,		13,															

C11 - 1.2 - Arithmetic Series Sum terms WS

Find the sum of the first sixth terms of the sequence.

2, + 4, + 6, + ____, + _____ =

3, + 7, + 11, + ____, + ____ =

8, 14, 20, ____, ____ =

7, 10, 13, ____, ____,

11, 14, 17, ____, ____,

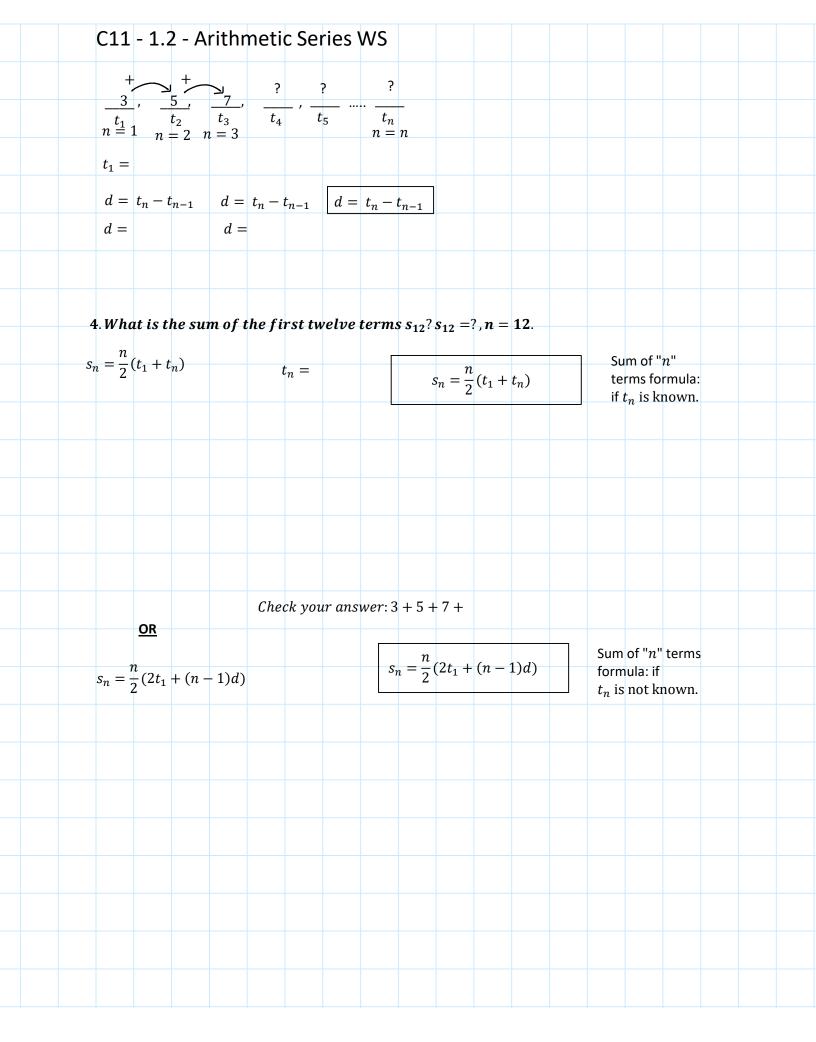
6, 8, 10, _____, _____

2, 6, 10, _____, _____,

3, 10, 17, ____, ____,

8, 13, 18, ____, ____,

7, 14, 21, ____, ____,


11, 17, 23, _____, _____,

8, 7, 6, _____, _____

7, 2, -3, ____, ____,

11, 8, 5, ____, ____

6, 5, 4, _____, _____

Final #		of the	finat	12 +04		_2	m = 1'									
Fina ti	ne sum	or the	TIPST	12 teri	ms. S ₁₇	2 = ?,1	n=12									
3,	7,	11,		15,					8, 14, 2	20, 26,	32	6,	13,20	, 27, 34	ł	
Find tl	ne sum	of the	first	18 ter	ms											
10, 8,	6,					3, -1,	, –5,					5, 2	2.5, 0, .			
Find t	he sum	n of the	- first	100 te	erms											
	10,	13,			, , , , ,		5, 1	1, 17,	23, 29)		14	ı, 38, 6	2, 86, .		
	,						-,	, ,								
Find th	e sum	of the	first 2	251 ter	rms.											
$\frac{1}{2}, \frac{3}{2}, \frac{5}{2}$							9 7	7 <u>5</u>					27, 13	, -1,		
$\frac{\overline{2}}{2}, \overline{2}, \overline{2}$,						2'2	2, 2,								

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$t_n = t_1 + (n-1)d$ 13, 15, 17, 19,	Find "n" the number of terms	
9, 12, 15, 18, 21	9, 12, 15, 18, 21 3342 2, -2, -6,410		4, 8, 12, 16, 20 444
-25 .42 .59 .569	-25 -42 -59 -569	13, 15, 17, 19,	3,5,7,9,11139
-25 -42 -59 -569	-25 -42 -59 -569		
8, -6, -20,160	8, -6, -20,160	9, 12, 15, 18, 21	2, -2, -6,410
		8 -6 -20 -160	-25, -42, -59,569

Find n and the sum.	
12 + 18 + 24 + + 72	8 + (-2) + (-12) + + (-102)
$t_n = t_1 + (n-1)d$ $s_n = \frac{n}{2}(t_1 + t_n)$	
$\frac{3n}{2}$	
10, 12, 14,88	14, 19, 24, 29, 34 99
4, 8, 12, 16, 400	3, 5, 7, 9, 371
16, 21, 26, 31, 1001	

Find	the mi	ssing term	s of the sec	quence.							
2,	4,	8,	,	,				,	, 2	7,	81, 243,
1,	2,	4,		,							
					_			_,	, 6	25,	3125
5,	20,	80,						,	, -1,	1 5'	$-\frac{1}{25'}$
-4,	2,	-1,								5	25
-4,	۷,				4,	<u>-</u>		1 16'			
9,	3,	1,		,							
						_					
10,	100,	1000,	,			5,		-		_,	
						2,		32,			
4,	6,	9,				Z, _		32,	,	_	, , , , , , , , , , , , , , , , , , ,
-4,	-2,	-1,			5	,		,	40, 8	30,	160,
					2,		_,		16, _	,	,
.5, .	25,	.125, _									
					1,				$-\frac{1}{8'}$	$\frac{1}{16}$	$-\frac{1}{32'}$
2 7'	12 35'	72 175' -			,				8′	16′	32′
7'	35′	175′ –			x + 1	l,			(x -	+ 1) ⁴ ,	
						′				_, ,	
6,	-1,	<u>1</u> -		,							
					3,			,	,		243
$\frac{1}{3}$,	$\frac{2}{9'}$	4 				olne fo	r v an	d missin	a terms	,	
						– 2,		2x + 2,			
$\frac{1}{2}$	$\frac{3}{2}$	9				_,		1 2)			x = 5
х,	x^2 ,	x^3 ,		_							

C11 - 1.3 - Geometric Means HW

Write the first terms 5 of the sequence

$$t_1 = 2, r = 3$$

$$t_1 = 4, r = -3$$

$$t_1 = -4, r = \frac{1}{2}$$

$$t_1 = 4$$
, $t_3 = 16$

$$t_1 = 5, t_3 = 20$$

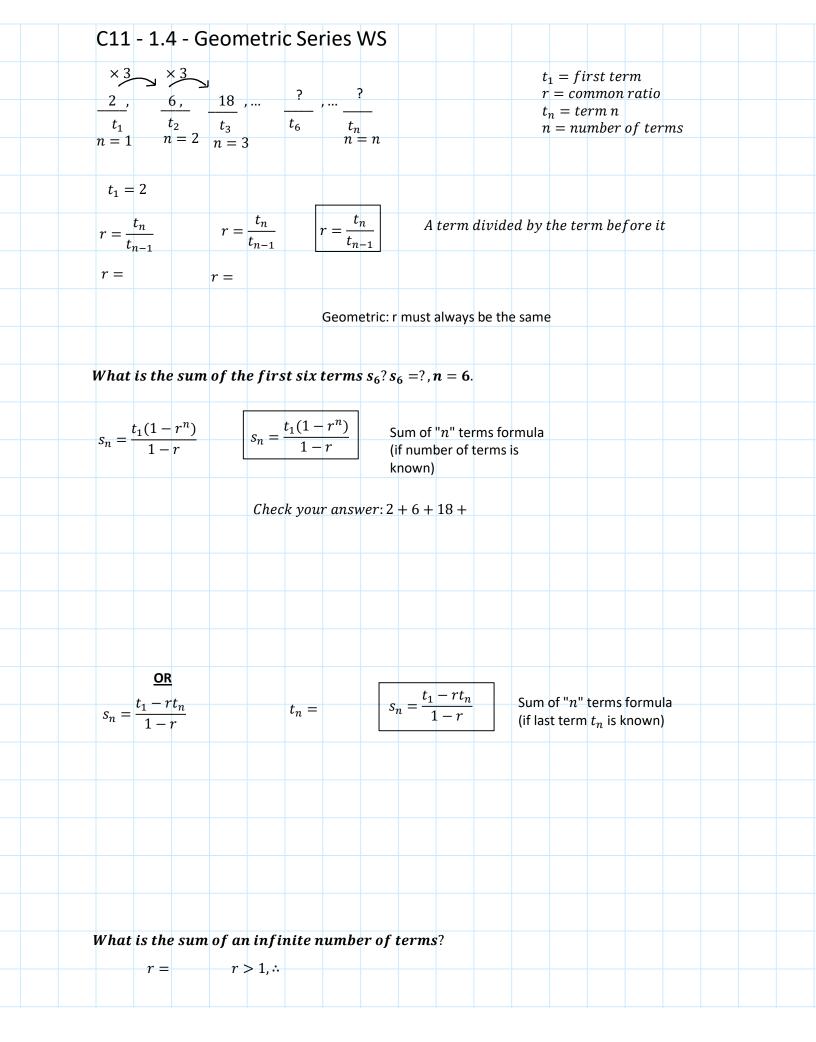
$$t_1 = 2, t_4 = -54$$

$$t_1 = 1, t_4 = \frac{1}{8}$$

$$t_1 = 3, t_5 = 243$$

$$t_1 = x - 1, t_3 = 4x - 4$$

C11 - 1.3 - Geometric Me	alis livv		
Find t_1 and r			
$t_2 = 2, t_3 = 4$		$t_2 = 10, t_3 = 20$	
$t_2 = 2, t_4 = 96$		$t_2 = 8, t_4 = 32$	
2 /14		12 - 0, 14 - 32	
$t_2 = 2, t_5 = -16$	t_2	$t = 2, t_6 = 32$	
		2.4 50040	
$t_3 = 4, t_{10} = 512$		$t_3 = -3, t_{12} = -59049$	


	C11	- 1.3	- G	eom	etri	c Sec	quer	ice j	find	t_1 ,	r WS	5						
F	ind the	e first t	term i	t_1 , and	l the c	ommo	n ratio	twice	2.									
	2, 4, 8,	,					3,	, 9, 27,					5	, 25, 1	25,			
<i>t</i>	1 = 2						t_1 :	_										
							1											
1	$r=\frac{4}{2}$	= 2					r =	_										
	$r = \frac{8}{4}$	= 2					r =	_										
	4																	
	8, -4,	2					6	26	216					F 10	20			
	0, 1,	2,					-0,-	-36, –	210					5, 10,	, 20,			
	$2, \frac{1}{2}, \frac{1}{8}$	l 5,					-27,	-3, -	$\frac{1}{2},$					27,	$3, \frac{1}{3},$			
		3							S						3			
	1, -1,	1,				_	10, 10	00, –1	000,				0.3,	0.03,	0.003	,		

Find the General Term	Find the 12th term. $t_{12} = ?$	Find out what term 128 is. $t_n=128$.
2, 4, 8,		
$t_1 = r =$		
r =		
$t_n = t_1 r^{n-1}$		
1		
Find the General Term		
	Find the 6th term. $t_6 = ?$	Find out what term 162 is. $t_n=162$.
2, 6, 18,		
Find the General Term	Find the 8th term. $t_8=$?	Find out what term $\frac{1}{128}$ is. $t_n = -\frac{1}{128}$.
$8, -2, \frac{1}{2}, \dots$		
0, 2,		
Find the General Term	Find the 5th term. $t_5=?$	Find out what term 0.00000003 is.
0.3, 0.03, 0.003,		
0.3, 0.03, 0.003,		

C11	1	2 C	0.000	o t ri	- C -	2110	2000	\A/C									
CII	- 1.	3 - G	eom	ietri	c se	que	nces	W5									
×	3 _' 1	×3_										$t_1 =$	first	term			
2	צב	6	1Ω		?		?							on rai	io		
	-' -	<i>t</i>		,		,							term		terms		
t_1	. 1	l_2	t_3	2	t_6		t_n					n-1	пинь	er oj	ternis		
n –	1		n =	3			n - n										
t_1	= 2																
				+			t						_	_			
r =	$\frac{t_n}{t_{n-1}}$		<i>r</i> =	$\frac{c_n}{t}$		r	+ n		A	term (divide	ed by t	the te	rm be	fore i		
	t_{n-1}			ι_{n-1}		╀┺	^t n−1										
r =	:		r =														
						Geo	metri	: r mu	st alw	ays be	the sa	me					
										,							
Fina	l the G	enerai	l term	$t_n = ?$													
t,	$t_1 = t_1 r$.n-1						n-1		C							
- 1	ι •1·					'	$_n=t_1$,		Ger	nerai t	erm fo	rmuia	l			
Wha	t is th	o fift	h tom	m + 2	4 _2	no — [•										
vv na	i is iii	εμιμ	illeri	11 15:	ι5 —:	, n – .) .										
t_n	=																
							swer:			مناطنطان	d tha	0 100 100	on rot	ia 2 tin	to .		
				Kei	nemb	er. You	Could	nave a	1150 1111	utipiie	a the t	Jonnino	Jii rati	10 2 1111	nes to <i>t</i>	[′] 3	
		_		_													
3.	Гhe nu	mber	1458 i	s wha	it terr	$n?t_n =$	= 1458	3, n=7	1								
t_n	$= t_1 r^n$	-1															
70	_																

Find '	n" the	numbe	er of te	erms											
2, 4, 8,	25	6 –	\rightarrow	t_n		3	, 9, 27,		729		4,	3, 16,	204	18	
$t_n =$															
8, -4,	2,	$\frac{1}{256}$			-6,	-36,	-216		- 466	556	5	, 10, 20),	.160	
$\frac{1}{2}, \frac{1}{2}, \frac{1}{6}$	<u>.</u> ,	1				9, –3	3, 1,	1			27	$\frac{1}{3}, \frac{1}{2}, \dots$	<u>2</u>	1	
2.8	3	512						81				3	2	187	
1 2 /	ł, <i>(</i>	5526			10, 100	1000)	10000	100	0	3, 0.03, 0.	003	0 0000	00000	13
1, 2,	r,	,,,,,			10, 100	, 1000	,	10000	700		.5, 0.05, 0.	, , , , , , , , , , , , , , , , , , ,	0.0000		

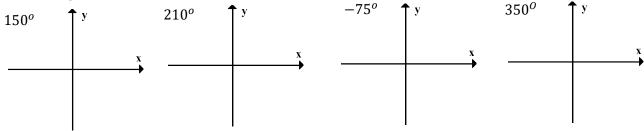
C11 - 1.4 - Geometric Sequence sum	terr	ms WS	
Find the fourth, fifth and sixth terms of the sequence.			
2, + 4, 8, +, +, +	_ =	=	
3, + 9, + 27, +, +, +		_ =	
1, + 2, + 4, +, +, +		. =	
5, + 20, + 80, +, +, +		_ =	
4, + 6, + 9, +, +, + _		. =	
4, + 2, + 1, +, +, +			
9, + 3, + 1, +, +, + _			
10, + 100, + 1000, +, +,	+	=	
4, + 10, + 25, +, +, +			
7, + 14, + 28, +, +, +			
2, + 12, + 72, +, +, +			
6, + 1, + $\frac{1}{6}$, +, +		=	
$\frac{1}{3}$, + $\frac{1}{9}$, + 1/27, +, +			
2, + -4, + 8, +, +, + _		=	
$\frac{1}{2}$, + $\frac{3}{2}$, + $\frac{9}{2}$, +, +, +		_	
$x, +x^2, +x^3, +$, + =			

C11 - 1.4 - Geometr	ic Sequence <i>f ind</i>	$t_1, r WS$	
Find the sum of the first 6 tern	ns. $s_6 = ?, n = 6$		
$s_n = \frac{t_1(1-r^n)}{1-r}$	3 9 27	5, 25, 125,	
1-r	3, 7, 27,		
Find the sum of the first 9 term	ıs		
8, -4, 2,	-6, -18, -54	5, 10, 20,	
Find the sum of the first 11 te	erms.		
$2, \frac{1}{2}, \frac{1}{4}, \dots$	$9, -3, -\frac{1}{3}, \dots$	$27, 3, \frac{1}{3},$	
2 4	3		
Find the sum of the first 5 teri	ms.		
1, 2, 4,	10, 100, 1000,	0.3, 0.33, 0.333,	

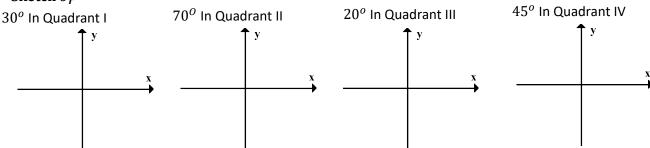
C4.	1 4	4 6			۲.		\ \ \ (C										
C1	1 - 1	.4 - G	eon	netri	c fin	d 'n'	WS										
Find	n, and	d the su	m														
2, 4, 8	3	256 —	>	t_n			2.0.2	7	720			5 21	5 125	,	2125		
t -	- t.r ⁿ	256 		$t_1 - t_1$	rt_n		3, 9, 2	7,	/29			J, Z.	J, 12J	,	3123		
cn -	- 11		$S_n =$	1 –	r												
8, -	1, 2,	$\frac{1}{256}$			-6,	-36, -	-216.		- 4665	66		5, 10,	20,	16	50		
		250															
1	1	1						1					1		1		
$2, \frac{1}{2}$	1 /8,	$\frac{1}{512}$				9,	-3, 1,	<u>1</u> 81	-			2	$7, 3, \frac{1}{3}$	·,	$\frac{1}{2187}$		
1, 2,	4,	.65536		10, 10	0, 1000),	.1000	000		0.	3, 0.03	, 0.003	3, 0.	00000	00000	3	

	CTT	- т.	J - I	1111111	te G	20111	etric	sec	luen	ces	ΠVV					
١	What	is the	sum o	of the i	nfinite	seque	nce?									
	4	_, _	2	, 1	,						2	4	,8			
			1	1								1	1			
	1	,	$\frac{1}{2}$	$\frac{1}{4}$,					-1 		$\frac{1}{2}$	$-\frac{1}{4}$,		
	2		6	18												
		_,	^		,											
	t_1 :	= 2, <i>r</i>	= 2							t	1 = 8,	$r = \frac{1}{2}$				

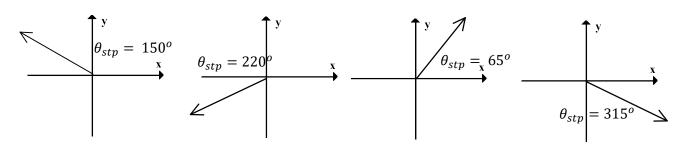
C11	- 1.6	5 - Si	gma	No	tatic	n W	'S									
Take	the s	um o	f the	terms	$a_k f$	rom t	he inc	dex to	n, go	ing u	p by 1	L each	ı time			
Arith	metic															
5																
$\sum_{k=1}$	3k =															
n-1																
$\sum_{}^{5}$	2k-1	1 =														
k=2	2.0	-														
_																
$\sum_{i=1}^{5} a_i$	-2 <i>k</i> -	1 =														
k=2																
Con																
	ometric															
$\sum_{i=1}^{6}$	$3(2)^{k-}$	·1 =														
k=2																
															<i></i>	3
$\sum_{i=1}^{4} 2i$	$2(3)^{k-}$	1 =													(3
k=1	, ,															
∞																
$\sum_{i} 3$	$3(\frac{1}{2})^{k-1}$	¹ =														
k=1																

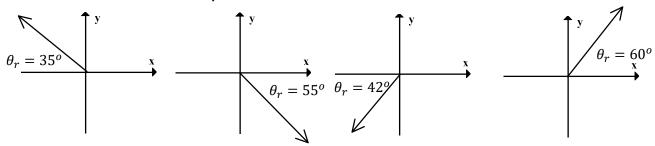

If you	ı make	\$36, (000 in	your fi	rst yea	r at wo	ork and	d get a	raise (of \$30	00 per	year.	How m	uch		
vviii y	ou ma	KE III y	oui ic	itii, 20	(11, 500	ii yeai	at wo	K;								
How	much	will yo	u mak	e total	after 1	L0 year	s, 20 y	ears a	nd 50	years?						

A ball rolls off a building 100 m tall. Each time the ball bounces on the floor, it rises to 80% of the previous height. How high does the ball bounce after the first bounce? The third bounce? How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. ($t_{10} = ?$) What is the total vertical distance the ball has travelled when it hits the ground for the 5th bounce? ($s_5 = ? \times 2 - 100$)	How high does the ball bounce after the first bounce? The third bounce? How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. (t ₁₀ =?) What is the total vertical distance the ball has travelled when it hits the ground for the 5th distance?					4.55						_	, ,,	•-	_	2001			
How high does the ball bounce after the first bounce? The third bounce? How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. (t ₁₀ =?) What is the total vertical distance the ball has travelled when it hits the ground for the 5th distance?	How high does the ball bounce after the first bounce? The third bounce? How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th distance?				uildin	g 100 r	n tall.	Each ti	ime th	e ball l	bounce	es on t	he flo	or, it r	ises to	80% o	t the		
How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th	previo	us iid	igiit.															
How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the nth bounce? (Find the general formula) How high does the ball bounce after the 9th bounce. $(t_{10} = ?)$ What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the 9th bounce. (t_{10} =?) What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the 9th bounce. ($t_{10} = ?$) What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How hi	gh do	es the	ball l	ounce	after	the fire	st bou	nce? T	he thir	d boui	nce?						
How high does the ball bounce after the 9th bounce. (t_{10} =?) What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the 9th bounce. ($t_{10} = ?$) What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the 9th bounce. (t_{10} =?) What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the 9th bounce. ($t_{10} = ?$) What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the 9th bounce. (t_{10} =?) What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the 9th bounce. ($t_{10} = ?$) What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the 9th bounce. (t_{10} =?) What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the 9th bounce. ($t_{10} = ?$) What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the 9th bounce. (t_{10} =?) What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the 9th bounce. ($t_{10} = ?$) What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the 9th bounce. (t_{10} =?) What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the 9th bounce. ($t_{10} = ?$) What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the 9th bounce. (t_{10} =?) What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the 9th bounce. ($t_{10} = ?$) What is the total vertical distance the ball has travelled when it hits the ground for the 5th																		
How high does the ball bounce after the 9th bounce. (t_{10} =?) What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How high does the ball bounce after the 9th bounce. ($t_{10} = ?$) What is the total vertical distance the ball has travelled when it hits the ground for the 5th	How hi	gh do	es the	ball l	oounce	after	the ntl	h bour	ce? (F	ind the	gene	ral for	mula)					
What is the total vertical distance the ball has travelled when it hits the ground for the 5th If it bounces forever, what is the total distance?	What is the total vertical distance the ball has travelled when it hits the ground for the 5th If it bounces forever, what is the total distance?																		
What is the total vertical distance the ball has travelled when it hits the ground for the 5th If it bounces forever, what is the total distance?	What is the total vertical distance the ball has travelled when it hits the ground for the 5th If it bounces forever, what is the total distance?																		
What is the total vertical distance the ball has travelled when it hits the ground for the 5th If it bounces forever, what is the total distance?	What is the total vertical distance the ball has travelled when it hits the ground for the 5th If it bounces forever, what is the total distance?																		
What is the total vertical distance the ball has travelled when it hits the ground for the 5th If it bounces forever, what is the total distance?	What is the total vertical distance the ball has travelled when it hits the ground for the 5th If it bounces forever, what is the total distance?																		
What is the total vertical distance the ball has travelled when it hits the ground for the 5th If it bounces forever, what is the total distance?	What is the total vertical distance the ball has travelled when it hits the ground for the 5th If it bounces forever, what is the total distance?																		
What is the total vertical distance the ball has travelled when it hits the ground for the 5th If it bounces forever, what is the total distance?	What is the total vertical distance the ball has travelled when it hits the ground for the 5th If it bounces forever, what is the total distance?																		
travelled when it hits the ground for the 5th distance?	travelled when it hits the ground for the 5th distance?	How hi	gh d	loes th	ie bal	l boun	ce af t	ter the	9th b	ounce	$e.(t_{10} =$	=?)							
travelled when it hits the ground for the 5th distance?	travelled when it hits the ground for the 5th distance?																		
travelled when it hits the ground for the 5th distance?	travelled when it hits the ground for the 5th distance?																		
travelled when it hits the ground for the 5th distance?	travelled when it hits the ground for the 5th distance?																		
travelled when it hits the ground for the 5th distance?	travelled when it hits the ground for the 5th distance?																		
travelled when it hits the ground for the 5th distance?	travelled when it hits the ground for the 5th distance?																		
														es fore	ever, w	vhat is	the to	al	
							ına tol	tne 51	tn			dista	ince?						
			. (3	3	_														

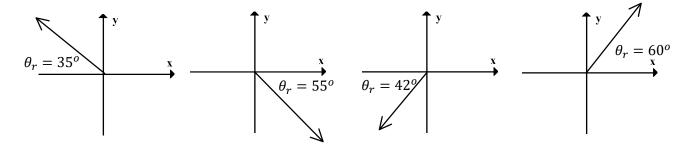

If you make	\$1 in your fir	st vear a	t work and	get na	id dou	hle ear	ch veai	r after	How	much v	will voi	ı make	in vo
10th, 12th, 2	20th year at v	vork?	C WOLK GITG	_Σ ει μα	.a aoa	Jie eat	on year	. GILCI		acii (yo	, make	40
How much	ماد س بردید النب	total oft	or 10 years	12.40	ore on	4 20	r - J						
HOW IIIUCII V	will you make	total alt	er 10 years	, 12 ye	ars arr	u 20 y	earst						

C11 - 2.1 - Sketch, Find θ_r , θ_{stp} HW

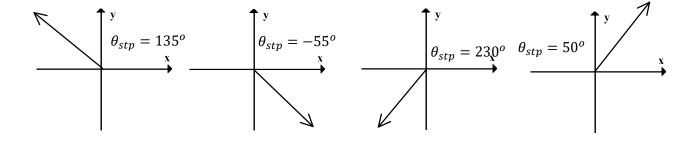

Sketch θ_{stp} .


Sketch θ_r

Find θ_r for each θ_{stp}

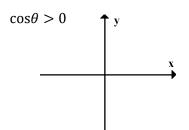


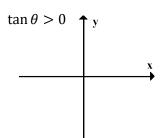
Find the smallest positive θ_{stp} for each θ_{r}

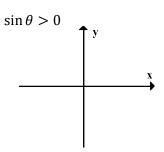


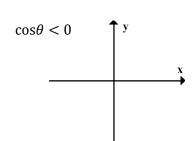
C11 - 2.1 - Sketch, Find $-\theta_{stp}$, θ_{cot} HW

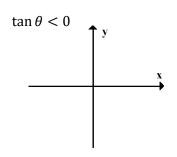
Find a negative $heta_{stp}$ for each $heta_r$

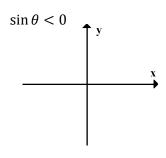


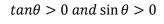

Find a positive and negative θ_{cot} for each θ_{stp}

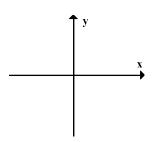


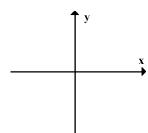

C11 - 2.2 - ASTC + / - HW

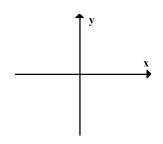

Draw 2 triangles in the quadrants for the following statements



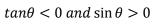


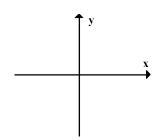


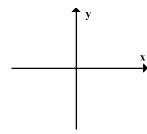

Draw a triangle in the quadrant for following statements


 $\cos\theta > 0$ and $\sin\theta < 0$

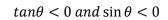
$$\cos\theta < 0$$
 and $\tan\theta > 0$

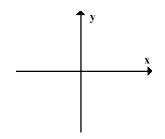


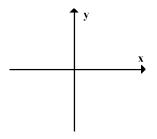


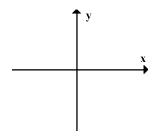

 $\cos\theta < 0$ and $\sin\theta < 0$

 $\cos\theta < 0$ and $\tan\theta < 0$

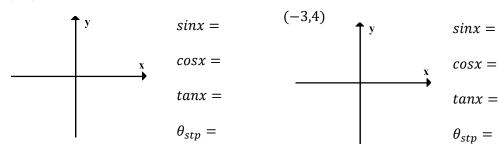


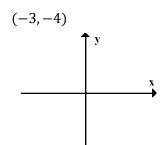


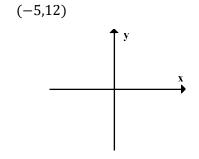


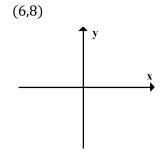

 $\cos\theta < 0$ and $\sin\theta > 0$

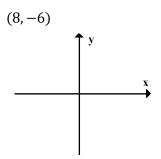
 $\cos\theta > 0$ and $\tan\theta < 0$

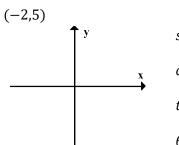




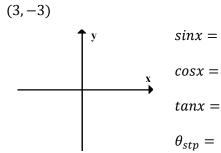

C11 - 2.3 - Trig Ratios HW

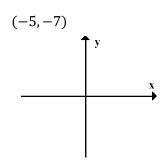

Find sinx, cox, and tanx for the following points. And θ_{stp}

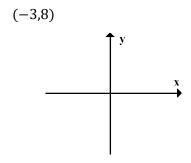

(4,3)

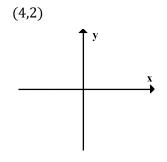

(3,4)

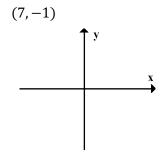
- $(2,\sqrt{5})$
- (5,12)
- $(5,4\sqrt{6})$

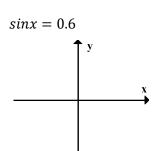

C11 - 2.3 - Trig Ratios HW

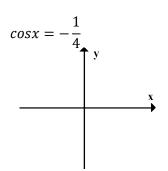

SOH CAH TOA

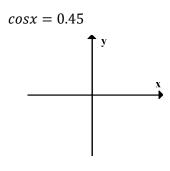

Find sinx, cox, and tanx for the following points. And θ_{stp}

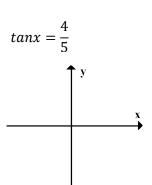


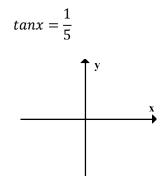

sinx = cosx = tanx = $\theta_{stp} =$

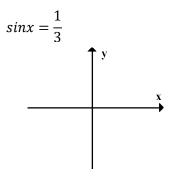


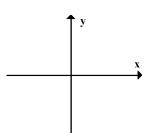


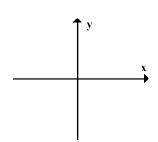


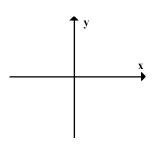

C11 - 2.3 - Trig Ratio Equations HW


Solve for $x, 0 \le x < 360$, answer should say x =








$$sinx = -0.1$$

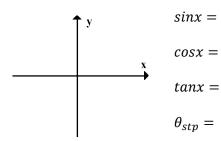
$$cosx = -0.5$$

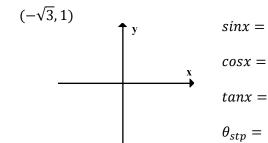
$$tanx = -0.866$$

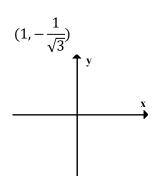
$$sinx = -0.2$$

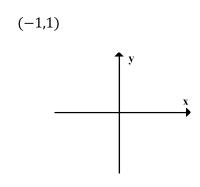
$$tanx = 0.866$$

$$cos x = 2$$

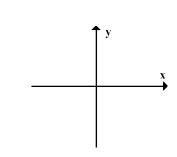

$$sinx = 0.5$$

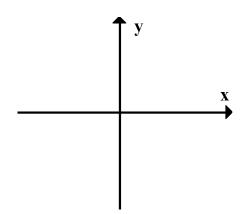

$$tanx = -1$$


C11 - 2.4 - Special Trig Ratios HW


SOH CAH TOA

Find sinx, cox, and tanx for the following points. And θ_{stp} (1,1)

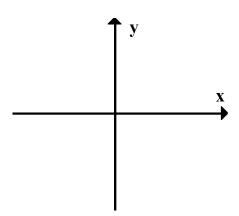



 $(-3\sqrt{3}, -\sqrt{3})$

 $(-2\sqrt{3}, -2)$

C11 - 2.4 - Special Trig Ratios HW

Solve using the Special Triangles and ASTC and the Unit Circle

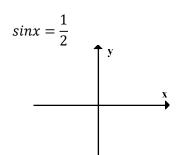


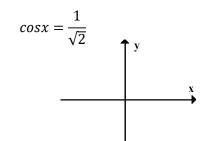
sin 330 =

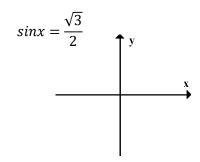
$$sin30 = sin150 = sin210 =$$

$$cos30 = cos150 = cos210 = cos330 =$$

$$tan30 = tan150 = tan210 = tan330 =$$

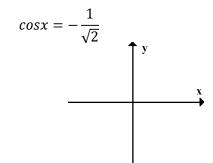

$$sin45 = sin135 = sin225 = sin315 =$$


$$cos45 = cos135 = cos225 = cos315 =$$


$$tan45 = tan135 = tan225 = tan315 =$$

C11 - 2.5 - Special Trig Equations HW

Solve for x, $0 \le x < 360$, answer should say x =



$$cosx = \frac{\sqrt{3}}{2}$$

$$tanx = 1$$

$$x$$

$$tanx = -1$$

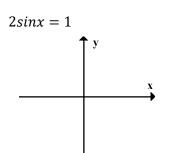
$$\xrightarrow{x}$$

$$sinx = -\frac{1}{\sqrt{2}} \qquad \uparrow y$$

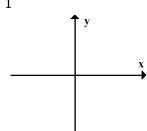
$$sinx = -\frac{\sqrt{3}}{2} \uparrow y$$

$$sinx = -\frac{1}{2}$$

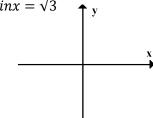
$$tanx = \sqrt{3}$$


$$sinx = -\frac{1}{2}$$
 $tanx = \sqrt{3}$ $cosx = -\frac{\sqrt{3}}{2}$ $sinx = \sqrt{3}$ $tanx = \frac{\sqrt{3}}{2}$

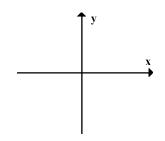
$$sin x = \sqrt{3}$$

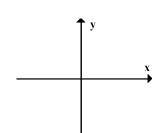

$$tanx = \frac{\sqrt{3}}{2}$$

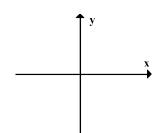
C11 - 2.5 - Algebra Special Trig Equations HW


Solve for x, $0 \le x < 360$

 $\sqrt{2}cosx = 1$

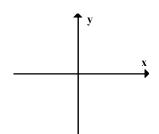

 $-2sinx = \sqrt{3}$

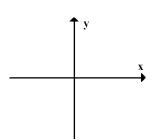



$$-\sqrt{2}sinx - 1 = 0$$

$$2\sin^2 x - 1 = 0$$

$$tanx - 2 = -3$$





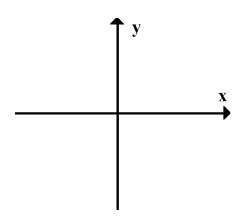
$$\sin^2 x = \frac{1}{4}$$

$$2\cos^2 x = 1$$

$$\tan^2 x = 1$$

$$2tanx = 2$$

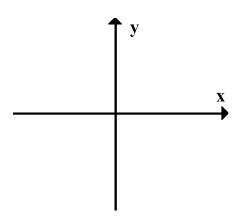
$$4\cos^2 x - 1 = 0$$


$$2sinx = -\sqrt{3}$$

$$2\cos x = -\sqrt{3}$$

$$2\cos x + 1 = 0$$

C11 - 2.6 - Unit Circle HW

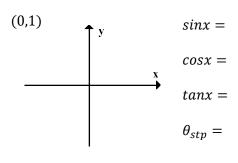

Solve using the Unit Circle

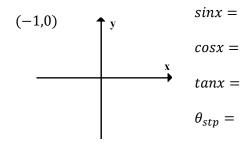
$$sin0 = sin90 = sin180 = sin270 = sin360 =$$

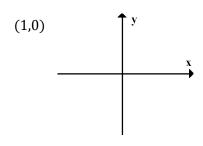
$$cos0 = cos90 = cos180 = cos270 = cos360 =$$

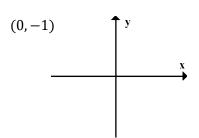
$$tan0 = tan190 = tan180 = tan270 = tan360 =$$

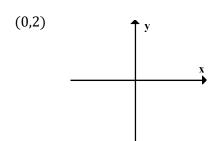
$$sin360 = sin450 = sin540 = sin630 = sin720 =$$

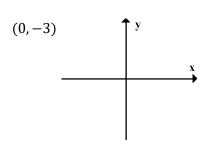

$$cos360 = cos450 = cos540 = cos630 = cos720 =$$

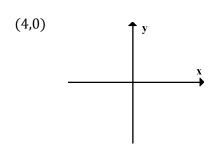

$$tan360 = tan450 = tan540 = tan630 = tan720 =$$

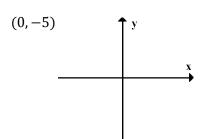

C11 - 2.6 - Unit Circle Trig Ratios HW


SOH CAH TOA

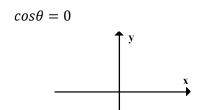

Find sinx, cox, and tanx for the following points. And θ_{stp}

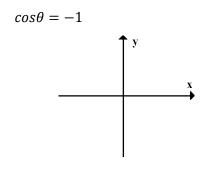


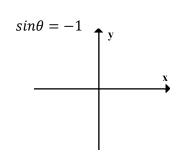


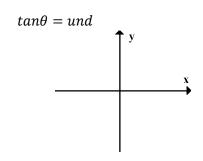


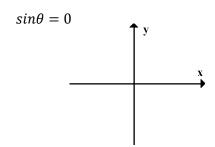


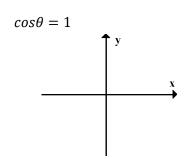


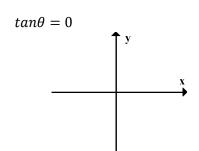


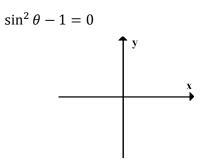

C11 - 2.6 - Unit Circle Trig Equations HW

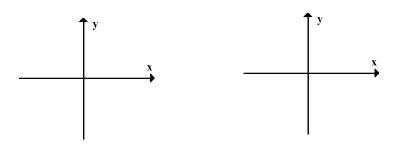

Solve for θ , $0 \le \theta < 360$

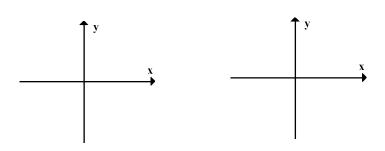










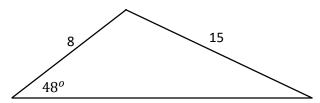

C11 - 2.6 - Factoring Trig Equations HW

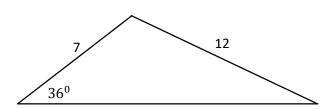
Solve for $x, 0 \le x < 360$, by factoring, then setting factors equal to zero and solve.

 $\sin^2 x - \sin x = 0$

 $\cos^2 x - \cos x - 2$

$$2\cos^2 x - \cos x - 1$$

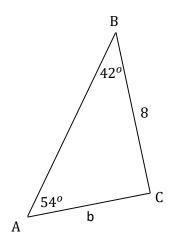

$$2\sin^2 x + \sin x - 1$$

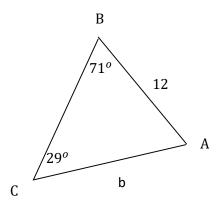

$$\cos^2 x + \cos x = 0$$

$$\sin^2 x + \sin x - 2 = 0$$

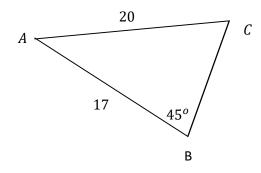
C11 - 2.9 - Solve ASS Triangle Without Sine Law Notes

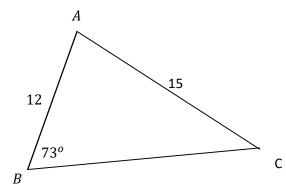
Solve the triangle

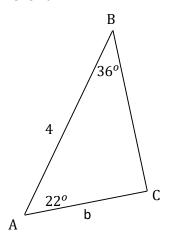


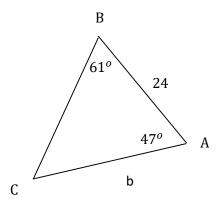


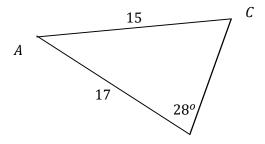
C11 - 2.9 - Algebra S	ine Law HW	
Solve for the variable.		
a 4	12 c	b _ 2
$\frac{a}{\sin 35^o} = \frac{4}{\sin 27^o}$	$\frac{12}{\sin 52} = \frac{c}{\sin 30}$	$\frac{1}{\sin 20^o} = \frac{1}{\sin 45^o}$
b 4	12 a	c 8
$\frac{b}{\sin 35^o} = \frac{4}{\sin 27^o}$	$\frac{1}{\sin 52} = \frac{1}{\sin 30}$	$\frac{c}{\sin 25^o} = \frac{8}{\sin 67^o}$
sinA _ sin29°	sin23 _ sinC	gin 12 gin 1
$\frac{3iiA}{14} = \frac{3ii(2)}{8}$	$\frac{3in23}{7} = \frac{3inC}{5}$	$\frac{\sin 42}{2} = \frac{\sin A}{3}$
	, , ,	
$\frac{\sin C}{5} = \frac{\sin 11^o}{1}$	$\frac{\sin 43}{21} = \frac{\sin C}{4}$	$\frac{\sin 73}{2} = \frac{\sin A}{7}$
5 1	21 4	2 /

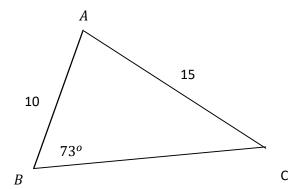

C11 - 2.9 - Sine Law HW

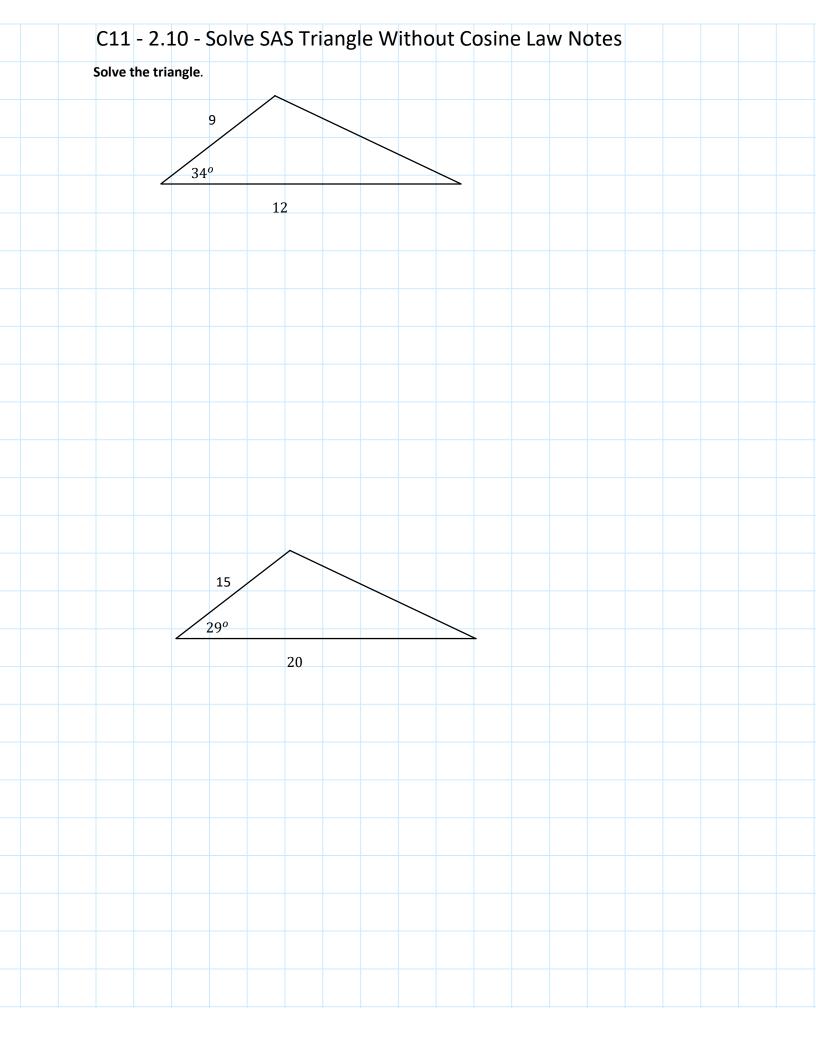

Solve for b.


Solve for the angle C




C11 - 2.9 - Sine Law HW


Solve for b.



Solve for the angle C

C11 - 2.10 - Algebra Cosine Law HW

Solve for the variable. Enter the right hand side into your calculator, square root both sides.

$$c^2 = 4^2 + 5^2 - 2(4)(5)\cos 30$$

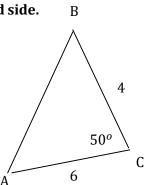
$$c^2 = 10^2 + 7^2 - 2(10)(7)\cos 60$$

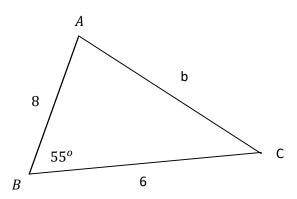
$$c^2 = 8^2 + 9^2 - 2(8)(9)\cos 45$$

$$c^2 = 11^2 + 4^2 - 2(11)(4)\cos 50$$

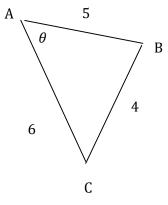
Solve for the variable. Do algebra to isolate $\cos C$, then take the inverse $\cos^{-1}(\)$

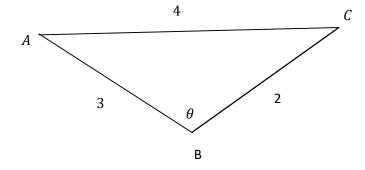
$$7^2 = 5^2 + 9^2 - 2(5)(9)\cos C$$

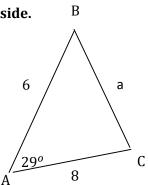

$$11^2 = 4^2 + 12^2 - 2(4)(12)\cos C$$

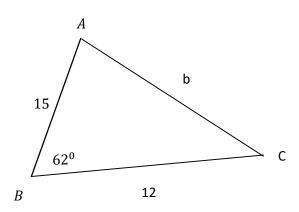

$$9^2 = 8^2 + 7^2 - 2(8)(7)\cos C$$

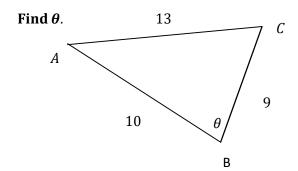
$$20^2 = 21^2 + 35^2 - 2(21)(35)\cos C$$

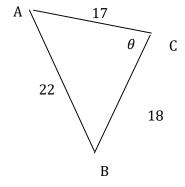

C11 - 2.10 - Cosine Law HW


Find the third side.

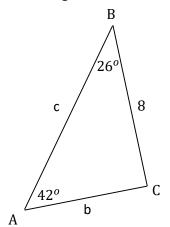

Find θ .

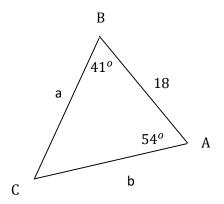


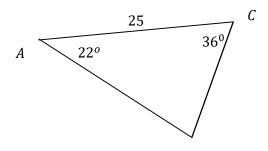



C11 - 2.10 - Cosine Law HW

Find the third side.

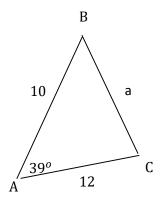


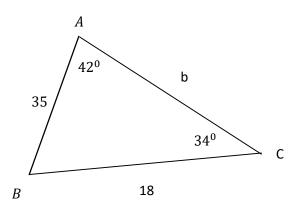


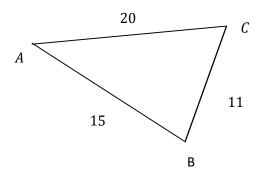


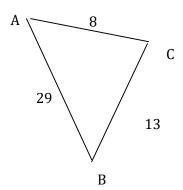
C11 - 2.11 - Solve the Triangle Sine Law $180^{0}\ \mbox{HW}$

Solve the triangle.








C11 - 2.11 - Solve Triangle Cosine/Sine Law HW

Solve the triangle.

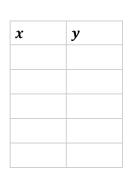
How many triangles? Solve the triangles.

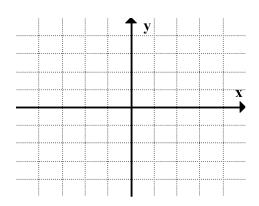
$$\angle A = 30^{o}, b = 10, a = 5$$

$$\angle A = 30^{o}, b = 10, a = 4$$

$$\angle A = 30^{o}, b = 10, a = 12$$

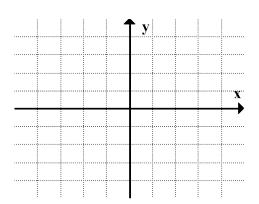
$$\angle A = 30^{\circ}, b = 10, a = 6$$

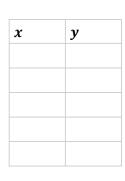

$$\angle A = 120^{o}, b = 8, a = 10$$

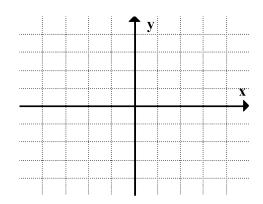

$$\angle A=120^o, b=8, a=4$$

C11 - 3.1 - Graph Stand Form TOV WS $(x^2 + q)$

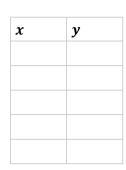
Graph the following equations using a table of values. State the Vertex.

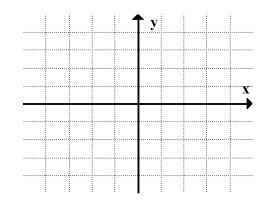

$$y = x^2$$




$$y = x^2 - 4$$

y	
	У

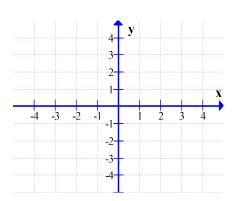



$$y = x^2 + 2$$

$$y = x^2 - 1$$

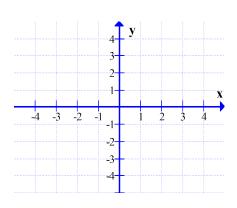
C11 - 3.1 - Graphing Vertex Form TOV WS (a=1)

Graph the following equations using a table of values, on graph paper. State the Vertex. Choose increments away from Vertex.

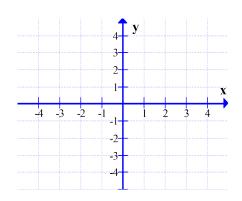

 $y = x^2$

 $y = 1(x - 0)^2 + 0$

x y

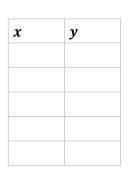

 $y = (x+2)^2$

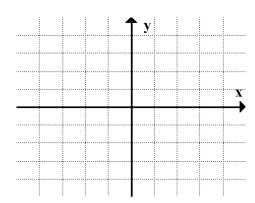
x	y	


 $y = (x-1)^2$ $y = (x-1)^2 - 0$

x	y	

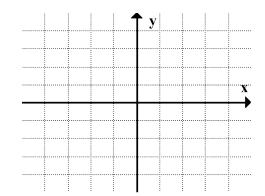
 $y = (x - 3)^2$

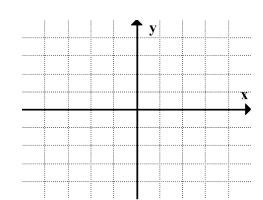

x	y	



C11 - 3.1 - Graph Stand Form TOV WS $(-ax^2)$

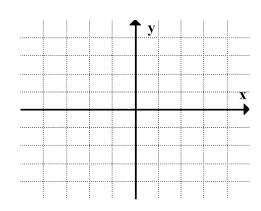
Graph the following equations using a table of values, on graph paper. State the Vertex. Choose your own increments.




ν	=	$-x^2$
. y		20

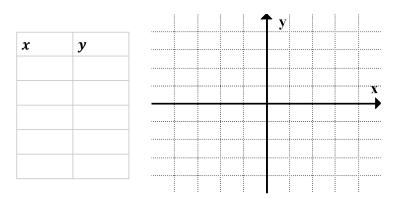
x	y	

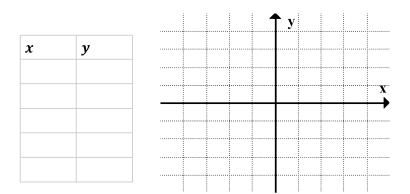



$y = -2x^2$	+	2
-------------	---	---

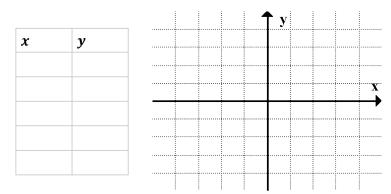
x	у	

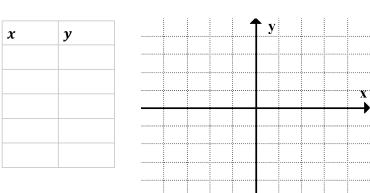
ν	=	$-x^2$	+	1
. y	_	л	- 1	




C11 - 3.2 - Graph Stand Form TOV WS (ax^2)

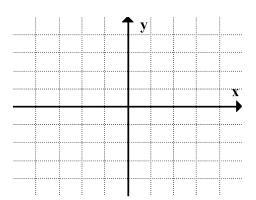
Graph the following equations using a table of values, on graph paper. State the Vertex. Choose your own increments.



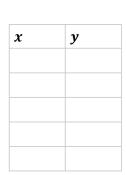

$$y = 2x^2 - 2$$

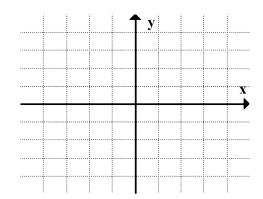
ν	=	$2x^2$	+	2
y	_	Δx	\top	_

$$y = 3x^2 - 3$$

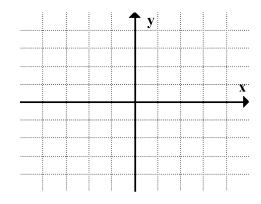


C11 - 3.2 - Graph Stand Form TOV WS (ax^2)


Graph the following equations using a table of values. State the Vertex.



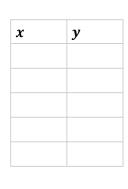
у	=	$2x^2$
,		

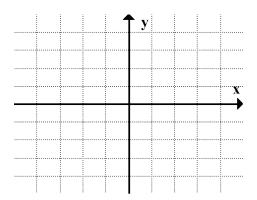

y :	=	$\frac{1}{2}$	x^2
-----	---	---------------	-------

x	у	

		1	У		
 	 			 	 ļ
					<u> </u>
 	 			 	 ļ
 <u>.</u>	 			 	

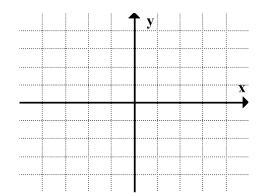
ν	=	$3x^2$	_	1
y		$\mathcal{O}_{\mathcal{N}}$		-

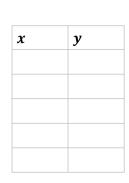


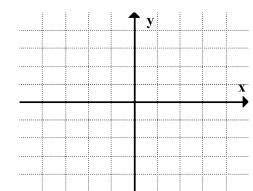


C11 - 3.2 - Graph Stand Form TOV WS $(\frac{1}{2}x^2)$

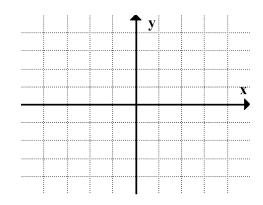
Graph the following equations using a table of values, on graph paper. State the Vertex. Choose your own increments.


$$y = \frac{1}{2}x^2$$

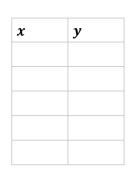


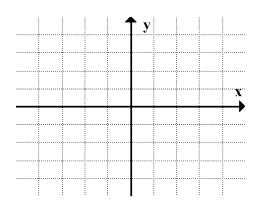

$$y = \frac{1}{2}x^2 - 4$$

x	y	

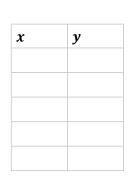

<i>y</i> =	$\frac{1}{2}x^2$	- 8
------------	------------------	-----

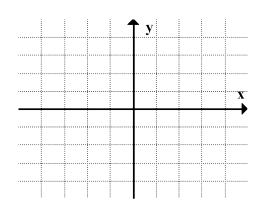
<i>y</i> —	$\frac{1}{4}x^2 +$	1
------------	--------------------	---

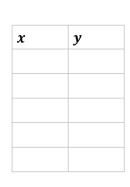


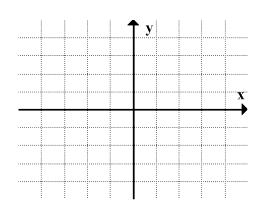


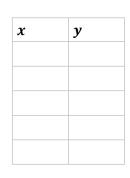
C11 - 3.2 - Graphing Vertex Form TOV WS (a=-1)

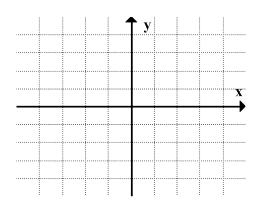

Graph the following equations using a table of values, on graph paper. Choose your own increments.

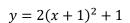

$$y = (x-2)^2 - 4$$

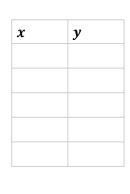


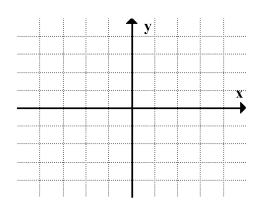

$$y = (x+1)^2 - 4$$



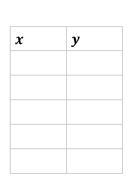

$$y = (x - 2)^2 - 1$$

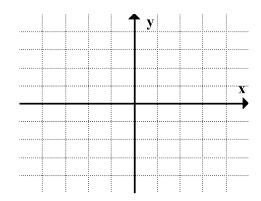

$$y = (x+5)^2 - 1$$

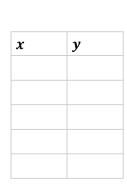


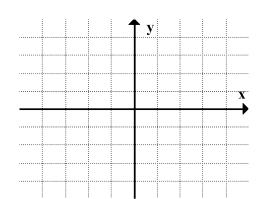


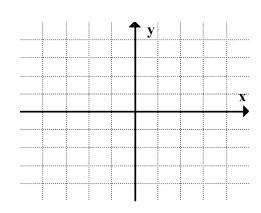
C11 - 3.2 - Graphing Vertex Form TOV WS $(a \neq 1)$


Graph the following equations using a table of values, on graph paper. Choose your own increments.

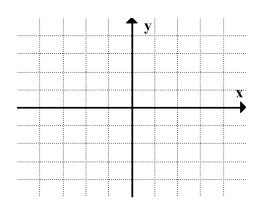





$$y = 2(x+2)^2 + 3$$

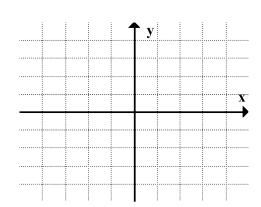

- / 1	\2 n
$y = \frac{1}{2}(x - 1)$	$(-2)^2 - 2$

27 —	2(2/1	1)2	1.2
y =	3(x +	1)"	+ 2

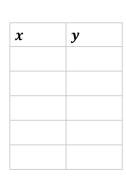


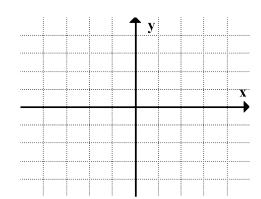
C11 - 3.2 - Graphing Vertex Form TOV WS (a = -#)

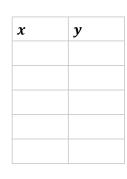
Graph the following equations using a table of values, on graph paper. Choose your own increments.

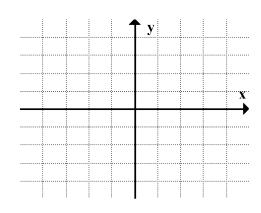

$$y = -(x+1)^2 + 1$$

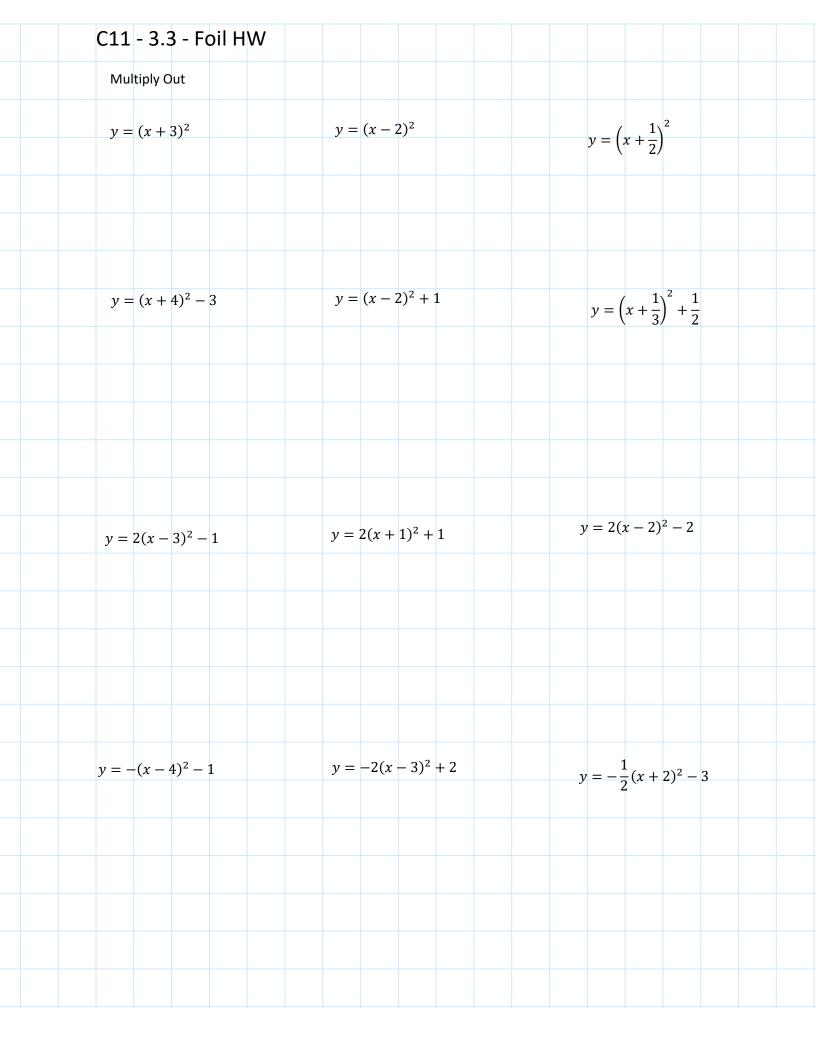
x	y	



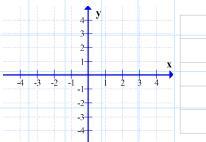

$$y = -2(x+2)^2 - 2$$



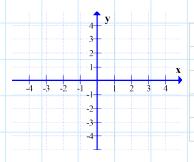

$$y = -\frac{1}{2}(x-1)^2 + 2$$



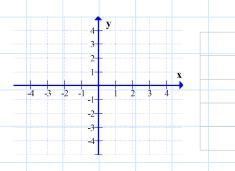
$$y = -3(x+1)^2 + 3$$



C11 - 3.3 - Completing the Square/Perfect Square HW


What value of "c" makes the following a perfect square, factor and write as a perfect square and the vertex: (x, y) and sketch a graph.

$$y = x^2 + 6x + c$$



Complete the square and write the vertex: (x, y) and sketch a graph.

$$y = x^2 + 6x + 5$$

$$y = 2x^2 - 8x + 9$$

$$y = x^2 - 8x + a$$

$$y = x^2 - 4x - 5$$

$$y = 2x^2 - 10x$$

$$y = -2x^2 - 12x - 15$$

$$y = x^2 + 4x + 1$$

$$y = x^2 + 8x$$

$$y = \frac{1}{2}x^2 + 4x + 2$$

$$y = x^{2} - 8x + c$$
 $y = x^{2} - 4x - 5$ $y = 2x^{2} - 10x$ $y = -2x^{2} - 12x - 15$
 $y = x^{2} + 4x + 1$ $y = x^{2} + 8x$ $y = \frac{1}{2}x^{2} + 4x + 2$ $y = 2x^{2} - 6x + 17$

What value of "c" makes the following a perfect square, factor and write as a perfect square.

$$y = x^2 + \frac{1}{2}x + c$$

$$y = x^2 - \frac{2}{3}x + c$$

Complete the square and write the vertex: (x, y).

$$y = x^2 + \frac{1}{2}x + 5$$

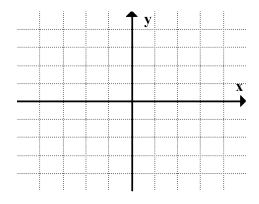
$$y = x^2 + \frac{1}{4}x + 1$$

$$y = x^2 - \frac{3}{2}x + 4$$

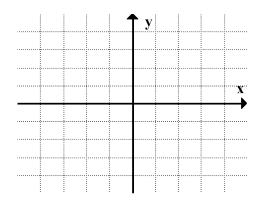
$$y = x^2 + \frac{2}{3}x$$

$$y = \frac{1}{2}x^2 - 2x + 9$$

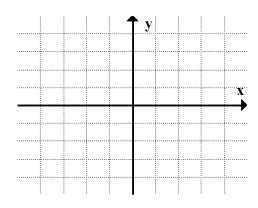
$$y = 2x^2 - \frac{2}{3}x + 17$$

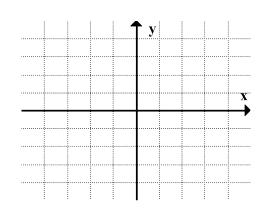

$$y = -2x^2 - \frac{3}{2}x - 15$$

$$y = 2x^2 - .05x$$


C11 - 3.4 - Find Equation in Vertex Form HW

Find equation in Vertex Form and graph.


Vertex: (1, -4)Point: (2, -3)


Vertex: (-1, -2)Point: (1,2)

Vertex: (3, -4) *Point*: (2, -2)

Vertex: (2,1)y - int = -3

C11 - 3.5 - Vertex: $(-\frac{b}{2a}, y)$ Quadratics in Standard Form WS

$$Vertex = \left(\frac{-b}{2a}, y\right)$$

$$Vertex = \left(\frac{-b}{2a}, y\right)$$

$$Vertex = \left(\frac{-b}{2a}, y\right)$$

$$y = x^2 - 6x - 7$$

$$y = x^2 + 4x - 5$$

$$y = x^2 + 8x + 7$$

$$y = x^2 + 6x - 16$$

$$y = x^2 - 2x - 15$$

$$y = x^2 - 10x + 9$$

$$y = 2x^2 - 12x - 14$$

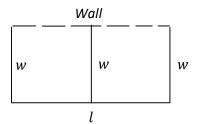
$$y = 4x^2 + 6x - 3$$

$$y = 4x^2 + 2x - 1$$

$$y = x^2 + \frac{1}{2}x + 5$$

$$y = 2x^2 - \frac{1}{2}x + 9$$

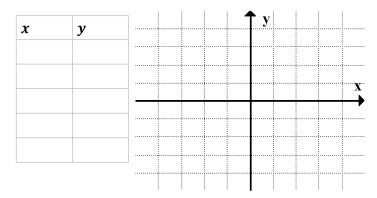
$$y = -2x^2 - .05x$$


C11 - 3.6 - Quadratic Word Problems

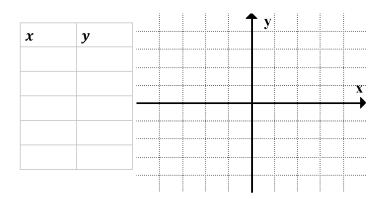
C11 - 3.7 - Quadratic Word Problems

Jack has 60m of fencing to build a three sided fence on the side of his house. Determine the maximum possible area of the fenced area, and the dimensions of the fence.

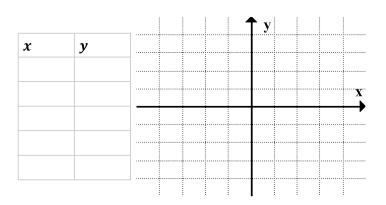
A rectangular 3 sided fence that is split in half is against a wall. The total fencing length is 42 m. What is the max area of the fence and dimensions?

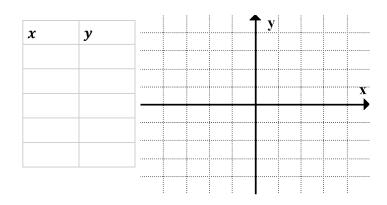

C11 - 3.8 - Bridge Find Equation HMK

A bridge has pillars 20 m tall and are 80 m apart. The maximum at the center of the bridge is 60 m tall. Find the equation of the parabolic bridge. What is the height 6 m away from each pillar.

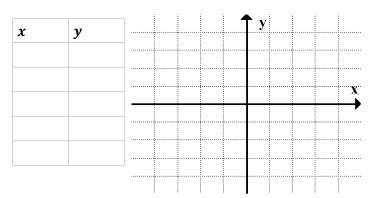

C11 - 4.1 - x-intercepts $x^2 + bx + c "a = 1"$ WS

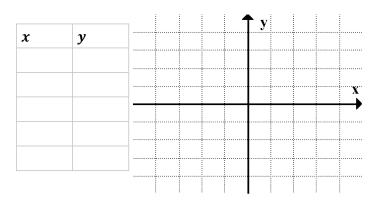
Factor the following, set y = 0, and set your brackets equal to zero seperately and solve. Then sketch a graph and label the x – inercepts


$$y = x^2 + 5x - 6$$
 _____ X ____ = ___ = ___ + ___ =

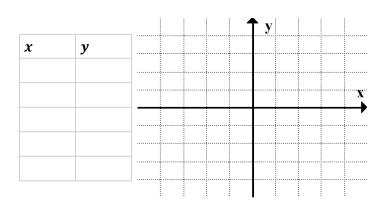


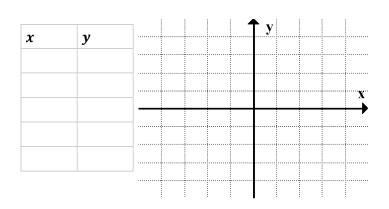
$$y = x^2 + 6x + 8$$
 ____ X ___ = _ = _ _ + _ _ =


$$y = x^2 + 3x - 4$$
 ____ x __ = _ = _ =

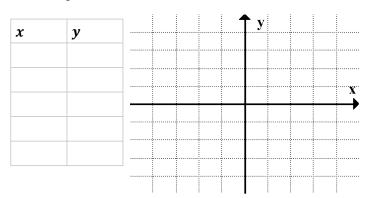


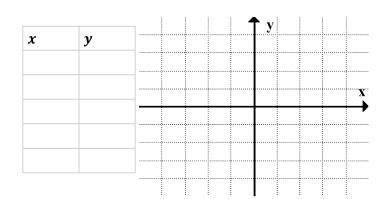
C11 - 4.1 - x-intercepts $x^2 + bx + c "a = 1"$ WS


Factor the following, set y = 0, and set your brackets equal to zero seperately and solve. Then sketch a graph and label the x – inercepts

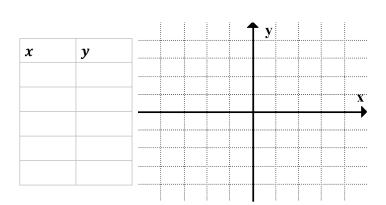


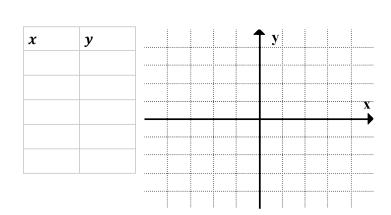
$$y = x^2 + 4x + 3$$
 _____ = ___ = ___ = ___ =


$$y = x^2 - 3x - 4$$
 _____ = _ = _ = _ = _ =

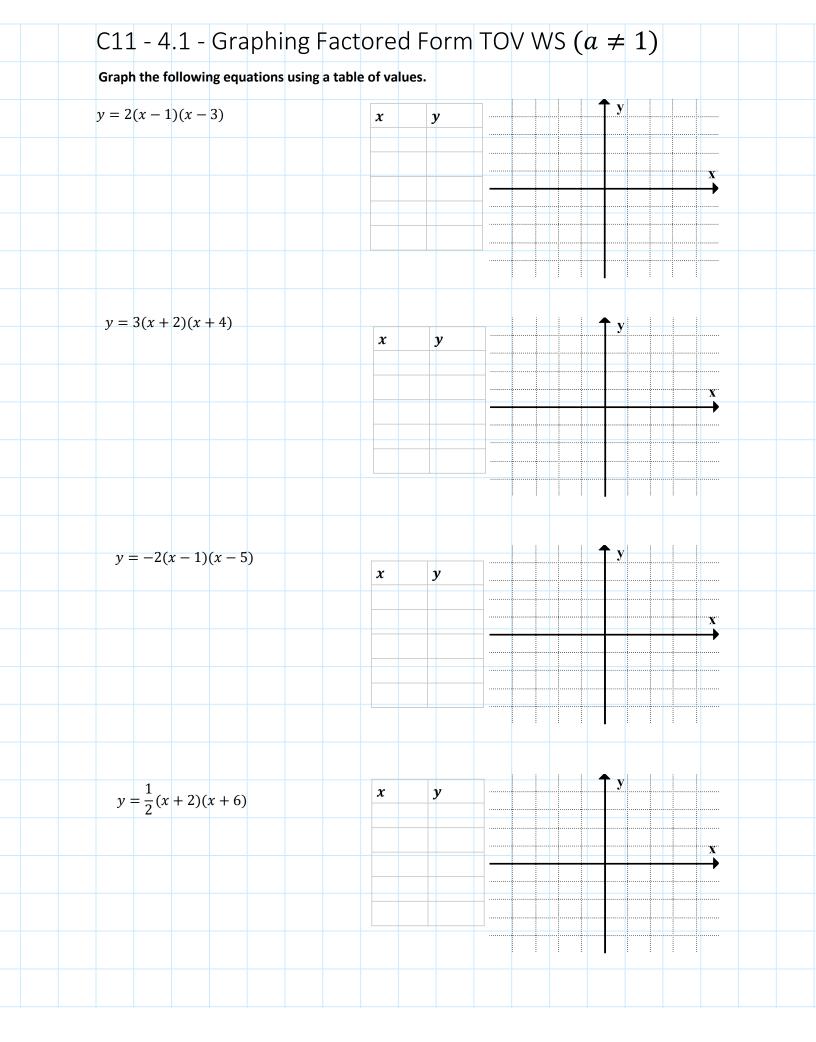


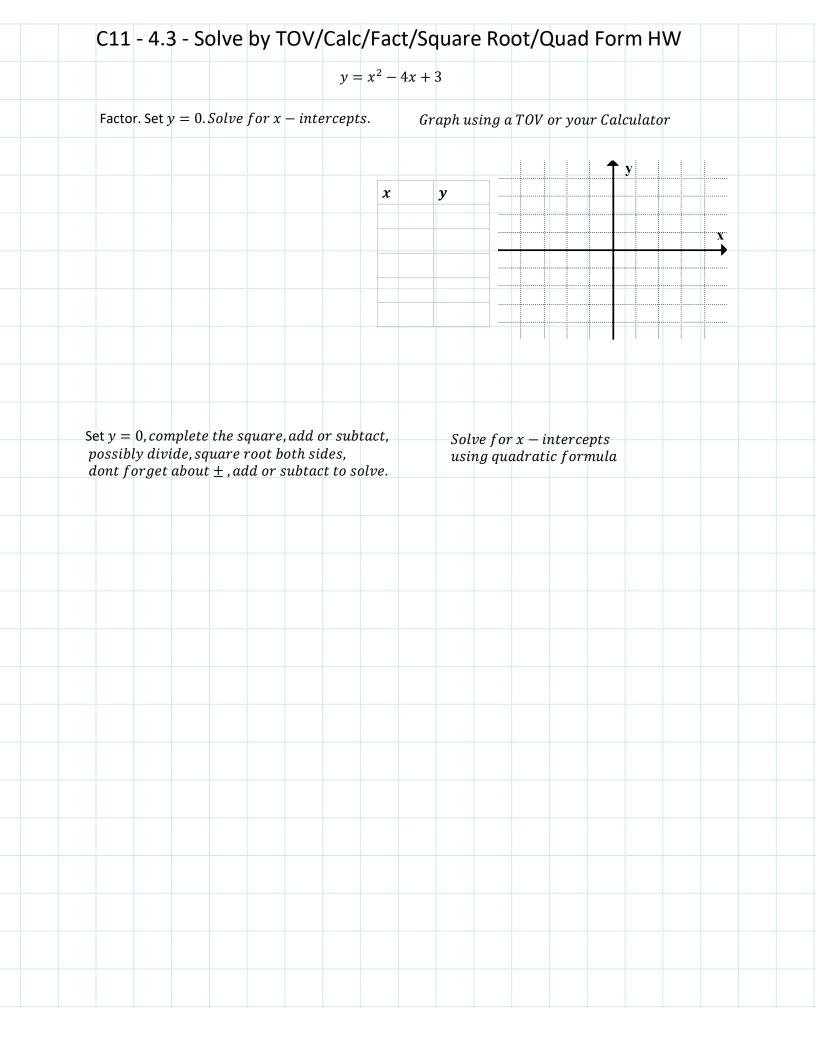
Factor the following, set y = 0, and set your Factors equal to zero separately and solve. Then sketch a graph and label the x – inercepts

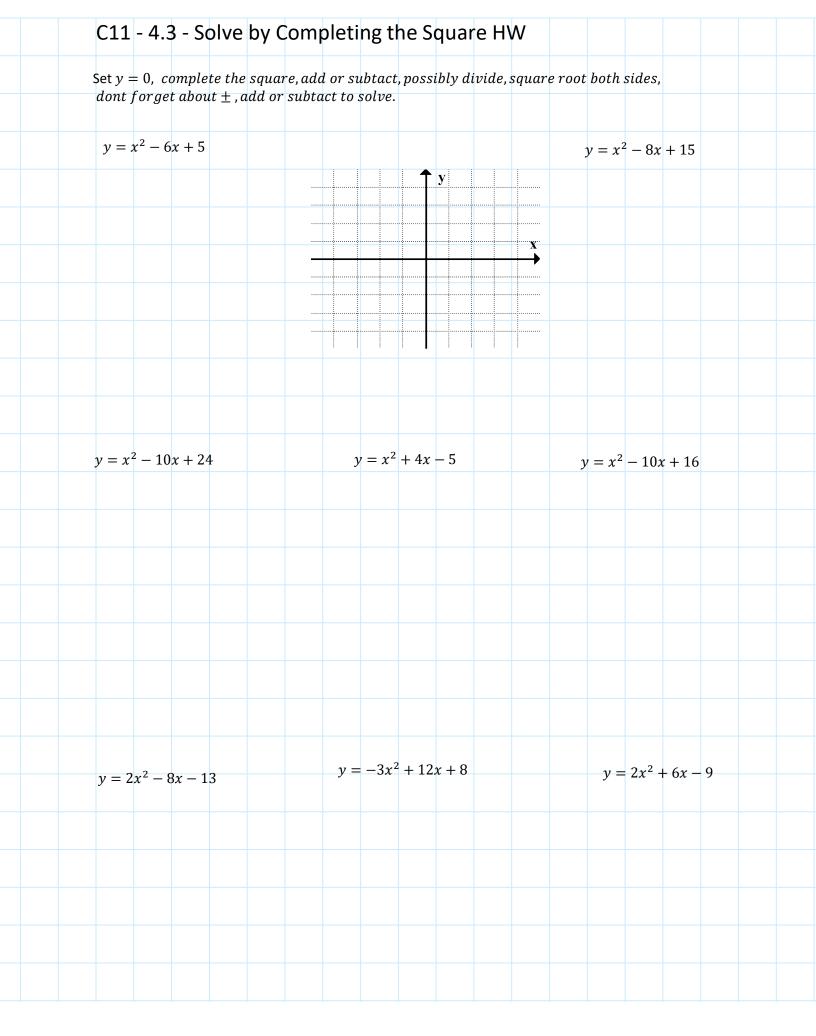

$$y = x^2 + 2x$$

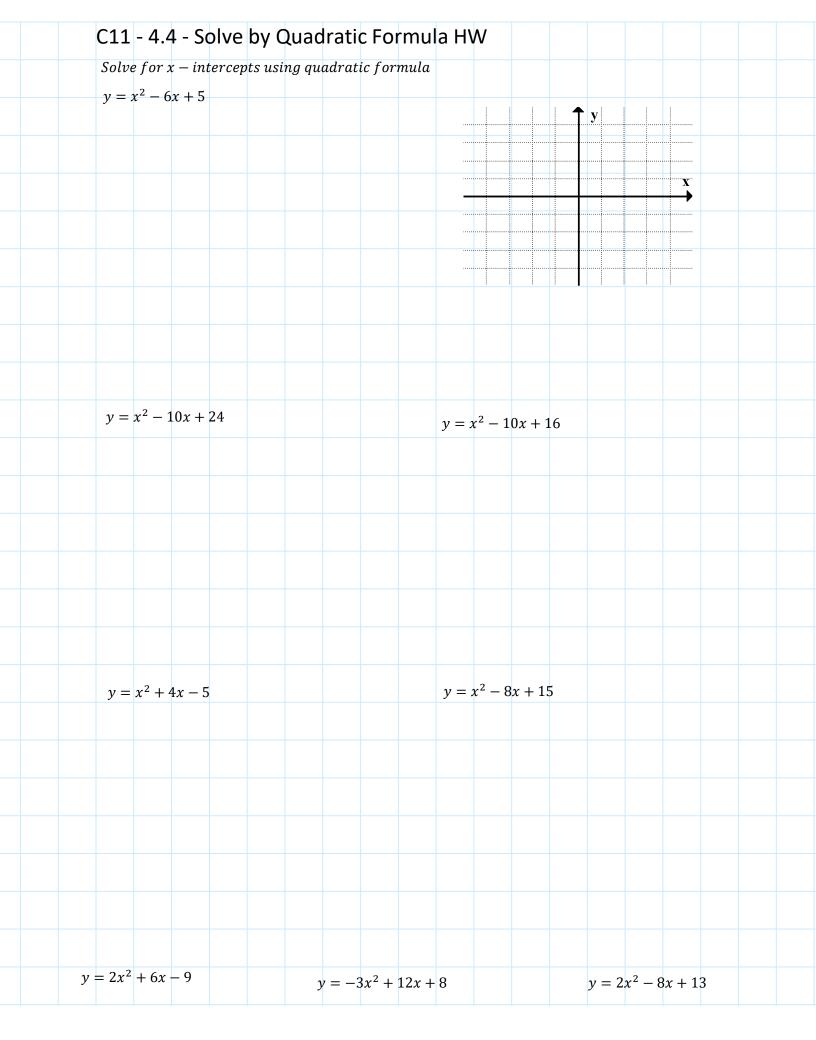

$$y = x^2 - 3x$$

$$y = -x^2 - 5x$$

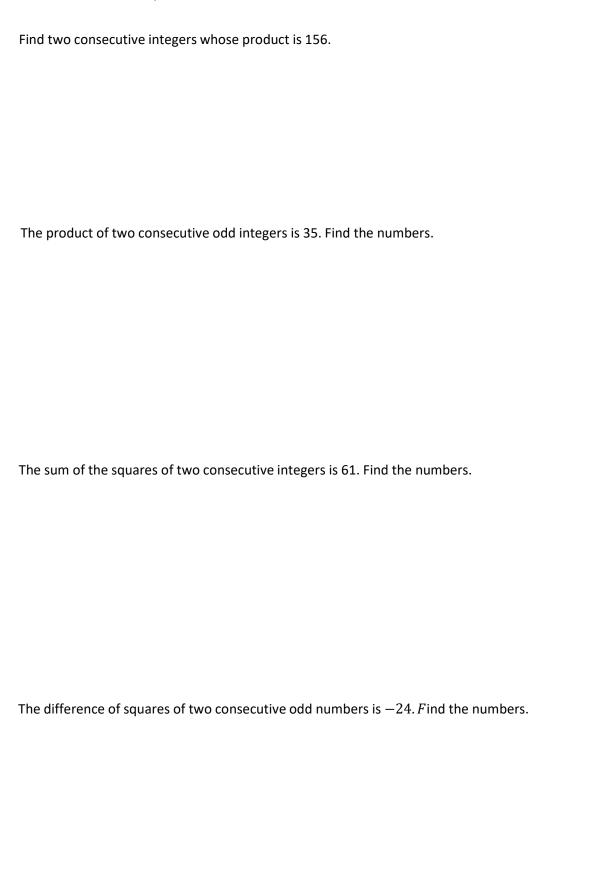

$$y = 2x^2 + 6x$$


C11 - 4.1 - x-intercepts $ax^2 + bx + c$ " $a \neq 1$ " WS Factor the following, set y = 0, and set your brackets equal to zero seperately and solve. Then sketch a graph and label the x – inercepts $y = 2x^2 + 7x + 6$ _____ = y y y


C11 - 4.1 - x-intercepts $x^2 - \# WS$ Factor the following, set y = 0, and set your brackets equal to zero seperaely and solve. Then sketch a graph and label the x – intercepts $y = x^2 - 1$ x y \boldsymbol{x} y $y=x^2-25$ $y = 4 - x^2$ y \boldsymbol{x} \boldsymbol{x} y $y = x^2 + 1$


C11 - 4.1 - x-intercepts $x^2 - \# WS$ Factor the following, set y = 0, and set your brackets equal to zero seperaely and solve. Then sketch a graph and label the x – intercepts $y = -x^2 + 9$ x y $y = 9x^2 - 4$ x y $y = 9 - 4x^2$ x y x y $y = 4x^2 + 4$

Find equation in Standard Form	x - int = 1 and 5	
x - int = 1 and 5 $a = 1$	$\begin{array}{c} x - tnt - 1 \ and \ 3 \\ (3, -8) \end{array}$	
x - int = -3 and 1 $a = 2$		
	x - int = 2 and 4	
x - int = 2 and 4	$\begin{array}{c} x - int = 2 \ and \ 4 \\ (0,4) \end{array}$	
$a = \frac{1}{2}$		
Factored form, with fractions	Standard form, no fractions	
$x - int = \frac{1}{2} \text{ and } \frac{9}{2}$	$x - int = \frac{1}{2} and \frac{9}{2}$	
$x - ini - \frac{1}{2} unu \frac{1}{2}$	2 474 2	

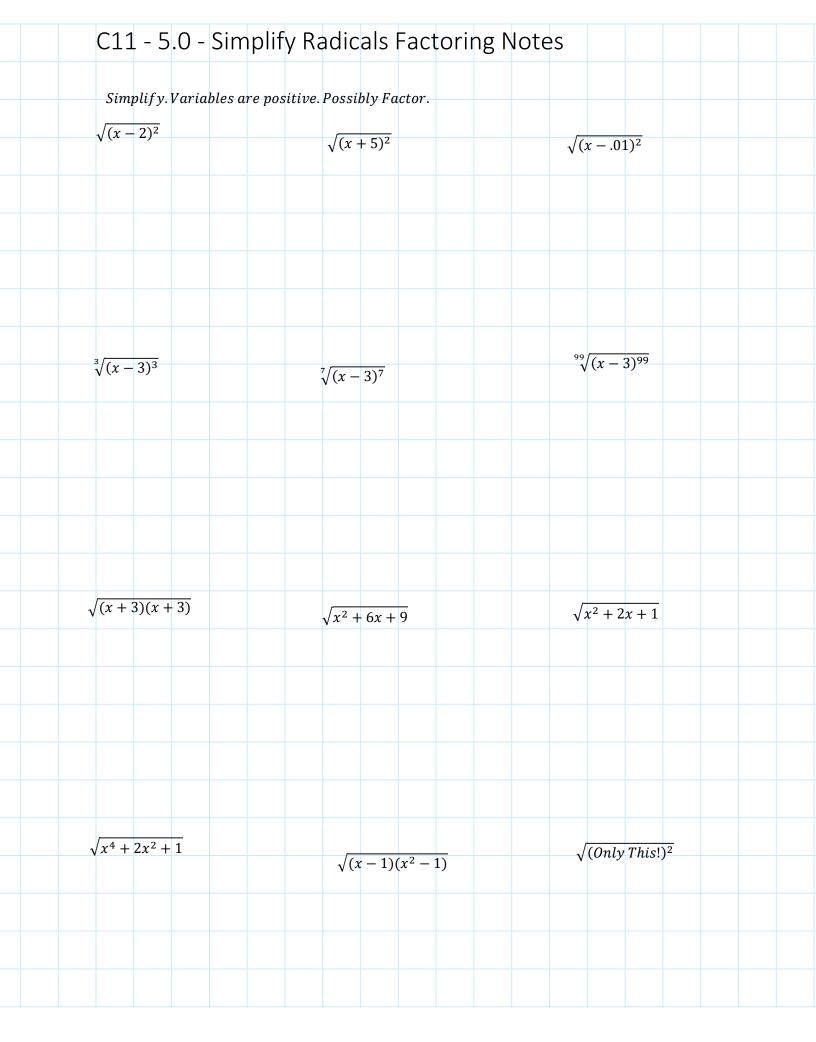


C11																
Find th	ie nun	nber o	f x-int	tercepts	s using	the di	scrimii	nant:	b ²	² – 4a	ıc					
y = 0	$c^2 - 4$	4x + 5				у	$y = x^2$	- 16				y = x	$x^2 + 6$	<i>x</i> + 8		
v =	r ² –	8x + 1	16				$y = x^2$	$^{2} + 4x$				<i>y</i> =	$x^2 - 2$	2x - 2	4	
<i>y</i>	X	0, 1					y	1 100								
<i>y</i> =	x^{2} —	4x +	5			у	=-x	$x^2 + 4x$: – 5							

C11 - 4.6 - Rectangular Garden
A rectangular garden has an area of 48 and a perimeter of 28. What are the lengths and widths?
A rectangular garden has an area of 56 and a perimeter of 30. What are the lengths and widths?

C11	4	.7 -	Qua	adra	atic	Wo	rd F	robl	lem	าร						
The s	um of	a numi	ber and	l its sa	uare i	s six. F	ind the	e numbe	er.							
Let x	c = 1s	T #			x	$+ x^2 = -6$	= 6 - 6 = 0				X _ 3					
						x – 6 = + 3) =				-2	+3	3=	1			
				x	- 2 =	0				r + 3	3 = 0					
				(<i>x</i> =	2				_						
				γ-							c = -3					
				2 -	+ 2 ² =	= 6 = 6 = 6				-3	+ (-3)	$(x^2 = 0)^2 = 0$	6			
					0 –	. 0	V				x + + (-3 -3 +	- 9 = 6 6 =	6 6 \			
														V		
The	differe	nce of	a num	ber ar	id its s	quare	is 30. F	ind the	numl	ber. *	Tricky					
					_											
Fin	d two	numbe	rs who	sum t	o 5 an	id muli	tiply to	6. Find	the n	umbe	rs.					

C11 - 4.7 - Quadratic Word Problems


C11	L - 4	.8 -	Ma	х Н	eigh	t/T	otal	Dis	tan	ce							
											ed by f	ollowi	ng eau	ation:			
THE II	CIGIIL V	s dista	iice Ul	a bow						CJEIIU	ca by II	O II O VV II	is Equ	auon.			
					h:	= -2 <i>a</i>	$d^2 + 8$	d + 10)								
What	is the	maxin	num he	eight a	nd the	distar	nce it t	ook to	get the	ere?		Dı	raw on	a grap	h.		
Wh	at was	the he	ight of	the c	iff?												
Ца	w for a	did the	arrow	go ho	foro it	hit th	arour	nd2		_							
ПО	w iai (iiu tiie	allow	go be	ioreit	ווונ נוופ	groui	iu :		Find [Oomair	and F	Range				
At v	vhat di	stance	is the	height	t 16 m?	? At w	hat dis	tance i	s the h	neight	greate	r than	0 16m	?			

(C11 - 4	- 8.	Ma	χН	eigh	ıt/T	otal	Dis	tan	ce							
						•											
	The height	vs dist	ance o	f a bo	w and	arrow	shot c	off a cli	ff is re	preser	ited by	, follov	ving ec	uatio	n:		
						,	F 12. 1	1011	4								
					n	$\iota = -$:	$5d^2 + 1$	10a +	1								
	Draw on a	granh				Albat id	- +h > m	- vimu	hoir	bt and	-1 +b a d	istance	:++06	1: to a	-+ +b or	- 2	
	Diaw on a	grup			V	/nat is	s the m	aximu	m neig	nt anu	the ai	Stance	IT too	K to ge	t there	5.	
	What was	the he د	eight o	f the c	:lift?												
	How far	did th€	arrow	≀ go b∈	efore it	t hit th	ie grou	nd?		F	ind Do	main :	and Ra	nge			

C1	11	- 4	.8 -	Ma	хН	leigh	ıt/T	otal	tim	1e								
Th	ie h	eight	vs tim	e of a	bow a	and arro	w shc	t strai	ght up	is repr	esente	ed by fo	ollowir	ng equ	ation:			
						1	h = -	$-5t^2 + 2$	20 <i>t</i> +	2								
Dı	raw	on a	graph.			V	Vhat is	s the m	ıaximu	m heig	tht and	the ti	me it t	ook to	get th	iere?		
144																		
VVr	nat v	was tr	ne hei	ight of t	the cii	itt?												
He	ow I	long d	lid the	arrow	fly be	efore it	hit th	e grour	nd?	Find	d Dom	ain and	d Rang	e				

C11 - 5.0 - S	quare/Cube Radicals Equat	ions HW
Solve for x,		
$x^2 = 4$		
$x^{-} = 4$	$x^2 = 9$	$x^2 = -1$
$x^2 = 25$	$x^2 = 0$	
		$x^2 = -9$
$x^3 = 27$	$x^3 = 8$	$x^3 = 64$
		x = 04
$x^3 = -8$	$x^3 = -27$	2 (4
$x^2 = -8$		$x^3 = -64$
$x^4 = 16$	5 242	
X - 10	$x^5 = 243$	$x^7 = 128$
$x^4 = -16$	$x^5 = -243$	$x^7 = -128$
$x^2 = 3$	$x^3 = 7$	$x^4 = -5$
		x — — 3

C11 -	5.0 - Simplify Radi	icals Variables HW	
Simplify	.Variables can be either posi	tive or negative.	
$\sqrt{4}$	$\sqrt{2^2}$	$\sqrt{x^2}$	16.2
		V X	$\sqrt{16x^2}$
$\sqrt{9x^2}$	$\sqrt{x^6}$	$\sqrt{x^{10}}$	$\sqrt{4x^4}$
V	VX°	V X 10	
Simpli	ify.Variables are positive		
			$\sqrt{8x^2y^3}$
$\sqrt{x^2y^2}$	$\sqrt{x^3}$	$\sqrt{x^5}$	V Ox y
	2		
³ √27	$\sqrt[3]{27x^3}$	$\sqrt[3]{-27x^3}$	$\sqrt[3]{-8x^3}$
$\sqrt[3]{x^6}$	$\sqrt[3]{x^5}$	$\sqrt[3]{-x^7}$	$\sqrt[5]{x^6y^3}$

C11 - 5.0 - Mixed Radicals HW

Write as Mixed Radicals

$$\sqrt[2]{12} =$$

$$2\sqrt[2]{18} =$$

$$3\sqrt[2]{45} =$$

$$\frac{1}{5}\sqrt[2]{50} =$$

$$\frac{1}{8}\sqrt[2]{20x^2} =$$

$$\frac{\sqrt[2]{63}}{3}$$

$$\frac{3}{4}\sqrt[3]{24x^5} =$$

$$\frac{2}{5}\sqrt[2]{54} =$$

$$\frac{3}{5}\sqrt[2]{40} =$$

$$3\sqrt[3]{24} =$$

$$\frac{1}{9}\sqrt[3]{54x^3} =$$

$$2\sqrt[3]{135} =$$

$$\frac{3}{5}\sqrt[3]{40} =$$

$$\frac{2}{7}\sqrt[3]{189x^7} =$$

$$\frac{1}{2}\sqrt[3]{56} =$$

$$2/3\sqrt[3]{48} =$$

$$\frac{5}{6}\sqrt[3]{162} =$$

$$\frac{1}{4}\sqrt[3]{80} =$$

C11 - 5.0 - Entire Radicals HW

Write as Entire Radicals

$$2\sqrt[2]{3} =$$

$$3\sqrt[2]{2} =$$

$$5x\sqrt[2]{2} =$$

$$4\sqrt[2]{5} =$$

$$2x^2\sqrt[3]{7} =$$

$$7\sqrt[2]{2x}$$

$$4x\sqrt[2]{7x} =$$

$$7\sqrt[2]{6} =$$

$$13x^2\sqrt[3]{3x} =$$

$$2\sqrt[2]{99} =$$

$$5\sqrt[2]{1000} =$$

$$7\sqrt[2]{4} =$$

$$2\sqrt[3]{8} =$$

$$7\sqrt[3]{6} =$$

$$4xy\sqrt[3]{5xy} =$$

$$2\sqrt[3]{48} =$$

$$3\sqrt[3]{12} =$$

$$8\sqrt[3]{8} =$$

C11 - 5.0 - Simplifying Radicals Decimals/Fractions HW

Simplify

$$-\sqrt{16}$$

$$-\sqrt{9}$$

$$\sqrt{\frac{1}{16}}$$

$$\sqrt{\frac{1}{9}}$$

$$\sqrt{-9}$$

$$-\sqrt{-9}$$

$$\sqrt{.01}$$

$$\sqrt{.0625}$$

$$-\sqrt[4]{81}$$

$$\sqrt[3]{-0.125}$$

C11 - 5.1 - Adding/S	ubtracting Radicals H	VV
Add or subtract the following r	radicals	
$2\sqrt[2]{3} + 1\sqrt[2]{3} =$	$\sqrt[2]{5} + \sqrt[2]{5} =$	$2\sqrt[2]{3} + 3\sqrt[2]{3} =$
$5\sqrt[2]{2} - 2\sqrt[2]{2} =$	$6x\sqrt[2]{3} - 8x\sqrt[2]{3} =$	$-7\sqrt[2]{2}-2\sqrt[2]{2}=$
$\sqrt[3]{7} + \sqrt[3]{7} =$	$5\sqrt[3]{7} + \sqrt[3]{7} =$	$4\sqrt[3]{5x} - 9\sqrt[3]{5x} =$
Simplify and Add or subtract	the following radicals	
$\sqrt[2]{12} + 2\sqrt[2]{3} =$	$2\sqrt[2]{12} + 1\sqrt[2]{75} =$	$2\sqrt[2]{18} - 4 + 5\sqrt[2]{50} =$
$-7\sqrt[2]{20} -5\sqrt[2]{45} =$	$8\sqrt[2]{44} + 3 + 6\sqrt[2]{99} - 1 =$	$7\sqrt[2]{28} + 3\sqrt[2]{63} - 2 =$
$5 + 4\sqrt[2]{20} + 1 - 5\sqrt[2]{125} + 6 =$	$2\sqrt[2]{12} + 1\sqrt[2]{20} + 1 =$	$2\sqrt[2]{28} + 1\sqrt[2]{20} + 2 =$

	lying Radicals HW	
Multiply the following radi	cals	
$7\sqrt{3} \times 2\sqrt{5} =$	$2\sqrt{7}\times3\sqrt{6}=$	$10\sqrt{5x} \times 3\sqrt{7} =$
$7x\sqrt{3} \times 2x\sqrt{5} =$	$10\sqrt{5x} \times 3\sqrt{7} =$	$x^3\sqrt{3x} \times x\sqrt{5x^5} =$
		$\sqrt{3} \times \sqrt{5} =$
$3 \times \sqrt{5} =$	$\sqrt{5} \times 3 =$	V3 ^ V3 —
		$\left(-4\sqrt{(-2)^2}\right)^2 =$
$\left(\sqrt{5}\right)^2 =$	$\left(-4\sqrt{2}\right)^2 =$	
		$\left(-3\sqrt{x+2}\right)^2 =$
$\left(\sqrt{x-1}\right)^2 =$	$\left(2\sqrt{x-1}\right)^2 =$	
		$\sqrt[3]{7} \times 2 =$
$7\sqrt[3]{3} \times 2\sqrt[3]{5} =$	$7x\sqrt[3]{3} \times 2x\sqrt[3]{5} =$	
	$7\sqrt{3} \times 2\sqrt[3]{5} =$	
$\left(2\sqrt[3]{x-1}\right)^3 =$	7\sqrt{3 \times 2\sqrt{5} =	$\left(3\sqrt[3]{2}\right)^2 =$

C11 - 5.2 - Multiply	ing Simplifying Radio	cals HW
Multiply the following radica	ls	
$7\sqrt{3} \times 2\sqrt{6} =$	$2\sqrt{8} \times 3\sqrt{6} =$	$10\sqrt{5x} \times 3\sqrt{7x} =$
$7x\sqrt{3} \times 2x\sqrt{9} =$	$2\sqrt{12x^2} \times 3\sqrt{6x} =$	$10\sqrt{14x} \times 3\sqrt{7} =$
$\left(\sqrt{5x}\right)^2 =$	$\left(3x\sqrt{2x}\right)^2 =$	$\left(-4\sqrt{2x^3}\right)^2 =$
$7\sqrt[3]{3} \times 2\sqrt[3]{27} =$	$7x\sqrt[3]{15} \times 2x\sqrt[3]{5} =$	$\sqrt[3]{8} \times 2 =$

C11 - 5.2 - Distribute/FOIL Radicals HW

Add or subtract the following radicals

$$\sqrt{2}(\sqrt{5} + \sqrt{3}) =$$

$$2\sqrt{7}(3\sqrt{6}+\sqrt{2}) =$$

$$5(2\sqrt{7}+4) =$$

$$\sqrt{7}(2+\sqrt{3x}) =$$

$$\sqrt[3]{7}(2x^2 + \sqrt[3]{3}) =$$

$$\sqrt{5}(6+\sqrt{5x}) =$$

$$(\sqrt{2}+\sqrt{5})(\sqrt{2}-\sqrt{5})$$

$$(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})$$

$$(\sqrt{2x} + \sqrt{5})(\sqrt{2x} + \sqrt{5})$$

$$\left(\sqrt{7} + \sqrt{5x}\right)^2$$

$$(\sqrt{2}+\sqrt{7})(\sqrt{3}+\sqrt{5})$$

$$(\sqrt{2}+\sqrt{3})(\sqrt{6}+\sqrt{2})$$

$$(\sqrt{x+2}+1)(\sqrt{x+2}-1)$$

$$(\sqrt{x-3}+1)(\sqrt{x-3}+4)$$

				2 -	1	
	$\frac{6\sqrt{2}}{3\sqrt{3}}$	$\frac{8\sqrt{1}}{4\sqrt{1}}$	2√3 4√0	$\frac{4\sqrt{6}}{2\sqrt{3}}$	$\sqrt{10}$ $\sqrt{5}$	
	$\frac{4}{3} =$	$\frac{8}{2} =$	$\frac{\overline{x}}{6} =$	$\frac{\overline{x^2}}{\overline{x}} =$	=	
						.2 - r Div
			<u>_</u>			
ν 63	$\frac{9\sqrt{7}}{\sqrt{63}}$	$\frac{6\sqrt{33}}{3\sqrt{2}}$	$\frac{6x\sqrt{2}}{2x^2\sqrt{2}}$	$8\sqrt{6x}$ $4\sqrt{2x}$	$\frac{\sqrt{12}}{\sqrt{4}}$	
	7 ===	=	<u>7</u> =	=	_	HV
						V
	$\frac{5\sqrt{1}}{6\sqrt{5}}$	$\frac{1\sqrt{4}}{6}$	$\frac{3x^2}{7x}$	$\frac{8\sqrt{1}}{3\sqrt{-}}$	$\frac{\sqrt{1}}{\sqrt{4}}$	
	$\frac{2}{4} =$	15 =	√ <u>5</u> √6 =	$\frac{\overline{0}}{\overline{2}} =$	=	
	<u>.</u>	=	=	-		

C11	L - 5	.3 -	Rat	iona	alize	e the	e d ϵ	noi	min	ator	· HV	V					
Ratio	nalize	e the L	enom	inato	r by n	ıultip	lying	the to	p and	the bo	ottom	by the	e roo1	on th	e boti	tom	
					-	-						-					
$\frac{1}{\sqrt{3}}$							$\frac{1}{\sqrt{2}}$						$\frac{1}{\sqrt{5}}$				
, -							√2						√5				
2													0				
$\frac{2}{\sqrt{2}}$							$\frac{6}{\sqrt{3}}$						$\frac{2}{\sqrt{5}}$				
							√3										
$\frac{1}{2\sqrt{3}}$	_						_	$\frac{2}{\sqrt{2}}$					12				
2√3	3						2	$\sqrt{2}$					$\overline{5\sqrt{6}}$				
$\frac{3}{\sqrt{3}+}$	1						$\frac{7}{\sqrt{6}}$						$\frac{25}{\sqrt{6}+}$				
γ 3 Τ	1						√6 -	+ 1					√6 +	- 1			
	7												1				
$\sqrt{6}$	$+\sqrt{3}$)	<u> </u>					2 -	$+\sqrt{3}$					$\frac{1}{\sqrt{2}}$				
							νο	T 1									

Square the following	Radical Equations H	
	$\sqrt{-x}$	w 2
\sqrt{x}	V	x + 2
x + 1	$3\sqrt{x}$	$-\sqrt{x}$
		V.
$\frac{\sqrt{x}}{2}$	$\frac{\sqrt{2x}}{5}$	$\sqrt{x-1}$
2	5	$\sqrt{x-1}$
$\sqrt{x+2}$	$2\sqrt{x+2}$	$-2\sqrt{x+2}$
$\sqrt{x} + \sqrt{5}$	$\sqrt{2x} + 7$	$\sqrt{x}-2$
$3\sqrt{x}-4$	$2+\sqrt{x-2}$	$8 + \sqrt{x - 7}$
$\sqrt{x+2} + \sqrt{x-1}$		$\sqrt{x-1} + \sqrt{x-1}$

Solve the following equations by squaring both sides, possibly do algebra first.

$$\sqrt{x} = 5$$

$$\sqrt{x} = 6$$

$$\sqrt{x} - 2 = 6$$

$$\sqrt{x} + 8 = 6$$

$$\sqrt{x} = -4$$

$$\sqrt{x+2} = 5$$

$$\sqrt{x-1} = -5$$

$$\sqrt{x+3} - 2 = 5$$

$$\sqrt{x} - 8 = -6$$

$$\sqrt{2x+3}=5$$

$$\sqrt{3x - 5} = 4$$

Solve the following equations by squaring both sides, possibly do algebra first.

$$\sqrt{2x} = \sqrt{x+4}$$

$$\sqrt{x} = \sqrt{6-x}$$

$$2\sqrt{2x} = \sqrt{2x+3}$$

$$\sqrt{2x-5} = \sqrt{x-1}$$

$$\sqrt{x+5} = \sqrt{2x+4}$$

$$\sqrt{4x-6} = \sqrt{2x+4}$$

$$2\sqrt{x+4}=4$$

$$3\sqrt{x+2} - 3 = 9$$

$$-5\sqrt{x-1} = 10$$

Solve the following equations by squaring both sides, possibly do algebra first.

$$2\sqrt{x-2} = \sqrt{x+1}$$

$$2\sqrt{x-5} = \sqrt{x+7}$$

$$2\sqrt{7x-6} = 3\sqrt{2x-8}$$

$$x = \sqrt{x+2}$$

$$x = \sqrt{2x + 3}$$

$$x = \sqrt{4x - 5}$$

$$2x = \sqrt{7x - 3}$$

$$2x = \sqrt{-2x + 1}$$

C1 ·	1.	- 5	1 -	Rag	dica	ΙFα	uat'	ions	Н۱۷	J						
Solve	th	e fo	llowi	ng eq	uation	s by s	quari	ng bot	h side	s, pos	sibly (do alg	ebra	first.		
\sqrt{x}	+ 3	=x	: + 1							٧	/2x +	1 = 7	- <i>x</i>			
$\sqrt{x+3}$	3 –	- 1 =	- x													
	-									√2	x + 4 -	+ 2 =	x			

Solve the following equations by squaring both sides, possibly twice. Isolate a root 1st.

$$\sqrt{x-3} = \sqrt{x+2} - 1$$

$$\sqrt{x+11} - \sqrt{x-4} = 3$$

$$\sqrt{x+35} = \sqrt{x+15} + \sqrt{x+3}$$

$$x = 1$$

C11 - 5.4 - Restrictions HW

Find the Restriction, by setting underneath the root ≥ 0 and solve

$$\sqrt{x-1}$$

$$\sqrt{x+2}$$

$$\sqrt{2x-3}$$

$$\sqrt{4x+1}$$

$$\sqrt{-x-1}$$

$$\sqrt{3-x}$$

$$\sqrt{-2x-3}$$

$$\sqrt{1-4x}$$

$$\sqrt{x^2-1}$$

$$\sqrt{4-x^2}$$

$$\sqrt{x^2+1}$$

$$\sqrt{x^2+4}$$

$$\sqrt{(x+1)(x-1)}$$

$$\sqrt{(x+1)(x-1)} \qquad \qquad \sqrt{(x+2)(x-3)}$$

$$\sqrt{x^2 + 5x - 6}$$

$$\sqrt{x^2 - 2x - 3}$$

Simplify.		
$12x^{3}$	$\frac{2x+6}{x+3} =$	
$\frac{12x^3}{3x} =$	x + 3	
	$x^2 - 4$	
$\frac{x^2 + 5x + 6}{x + 2} =$	$\frac{x^2-4}{x+2}=$	
x + 2		
$\frac{x+7}{x+7} =$	$\frac{x-2}{x^2+2x-8} =$	
x + 7	$\frac{1}{x^2 + 2x - 8} =$	
$\frac{x+3}{x^2-9} =$	$\frac{2(x+5)}{5+x} =$	
$x^2 - 9$	${5+x}$	
$\frac{x^2 - 6x + 8}{x + 3} =$	$\frac{2x^2 + 5x + 3}{x + 1} =$	
X + 3	x+1	
$\frac{2x^2 - 7x - 4}{2x + 4}$	x-5	
2x + 4	$\frac{x-5}{5-x} =$	
$\frac{x^2 - 4}{4 - x^2} =$	$\frac{2x-2}{1-x} =$	
4-1		
$ \begin{array}{r} x^2 + 5x - 6 \\ -x^2 - 5x + 6 \end{array} $	$\frac{(x-1)(x+1)}{(1-x)(-x-1)} =$	
$-x^2 - 5x + 6$	(1-x)(-x-1)	
$\frac{3-x}{x+3} =$	$\frac{x+2}{-2+x} =$	

$x^2 - 1$	$\frac{1}{x^2 - 1}$	$\frac{5}{x^2 + 5}$	$\overline{(x-1)}$	$\frac{4}{2x+6}$	x $x \neq 0$	Determ $\frac{2}{x}$	C11
			7)(x + 2)		1		- 6.2 -
$x^{2} - 9$	$\frac{3}{x^2-9}$	$\frac{1}{x}$	j ($\frac{\lambda}{2}$	$\frac{3}{x-1}$ $x-1 \neq 0$ $x \neq 1$	undefined	- Restr
		3x +	$\frac{x}{(x+4)}$	$\frac{x+2}{x-4}$		values	iction
x ² -	$\frac{2x}{x^2}$	2 - 10	(x-3)		$\frac{4}{x}$		ıs Rat
- 1	:						ionals
	_			$\frac{6x^2}{12x^3}$	$\frac{2}{x-2}$	2	ws
$4 - x^2$	$\frac{7x}{4-x^2}$	2x ² –	<u>(x – </u>				
		$\frac{4}{3x-5}$	9 1)(x -	2 -			
x	$\frac{8}{x}$	5	+ 1)	5 - x	$\frac{x}{2}$	x	
	3	$\overline{x^2}$	(
x ² -	$\frac{6}{x^2}$	9 + 10 <i>x</i> +	$\frac{4}{(x+2)^2}$	<u>:</u> x			
+ 4		25		32	$\frac{8}{5x}$	Ω	

$\frac{3}{4} \times \frac{1}{2} = \frac{3}{8}$ $\frac{3}{4} \times \frac{1}{2} = \frac{3}{4} \times \frac{1}{2} = \frac{2}{5x} \times \frac{3x}{4} = \frac{1}{x+2} \times (x+2) = \frac{1}{x+3} \times (x+2)(x+3) = \frac{1}{(x+2)(x+3)} \times (x+2) = \frac{1}{(x+2)(x+3)} \times (x+2) = \frac{x+2}{x+1} \times \frac{3}{x+2} = \frac{2(x+2)}{3} \times \frac{6}{x+2} = \frac{2x+4}{x+1} \times \frac{3}{x+2} = \frac{2x+4}{x+1} \times \frac{3}{x+2} = \frac{3}{(x+1)} \times \frac{2}{(x+2)} = \frac{x+1}{5} \times \frac{3}{(x+1)(x-2)} = \frac{4}{x^2+5x+6} \times \frac{x+3}{9} = \frac{x^2-64}{4} \times \frac{2}{x+8} = \frac{4}{x^2-x-6} \times \frac{x^2+5x+6}{3} = (x-5)(x^2-1) \times \frac{1}{x^2-6x+5} = \frac{5}{x-5} \times (5-x) = \frac{2x^2-x-6}{x+3} \times \frac{x^2-9}{x^2-4}$	Multiply, Simplify a	nd State Restrictions.	Leave answer in fac	ctored form.	
$\frac{1}{x+2} \times (x+2) = \frac{1}{x+3} \times (x+2)(x+3) = \frac{1}{(x+2)(x+3)} \times (x+2) = \frac{1}{(x+2)(x+3)} \times (x+2) = \frac{x+2}{x+1} \times \frac{3}{x+2} = \frac{2(x+2)}{3} \times \frac{6}{x+2} = \frac{2x+4}{x+1} \times \frac{3}{x+2} = \frac{2x+4}{x+1} \times \frac{3}{x+2} = \frac{3}{(x-1)} \times \frac{2}{(x+2)} = \frac{x+1}{5} \times \frac{3}{(x+1)(x-2)} = \frac{4}{x^2+5x+6} \times \frac{x+3}{9} = \frac{x^2-64}{4} \times \frac{2}{x+8} = \frac{4}{x^2-x-6} \times \frac{x^2+5x+6}{3} = (x-5)(x^2-1) \times \frac{1}{x^2-6x+5} = \frac{5}{x^2-6x+5} = \frac{5}{x^2-6x+5} = \frac{1}{x^2-6x+5} = \frac{1}{x^2-$	$\frac{3}{4} \times \frac{1}{2} = $ $3 \times 1 \qquad 3$	$\frac{3}{4x} \times \frac{1}{2} =$	$\frac{3x^3}{2} \times \frac{4}{x^2} =$		$\frac{2}{5x} \times \frac{3x}{4} =$
$\frac{x+2}{x+1} \times \frac{3}{x+2} = \frac{2(x+2)}{3} \times \frac{6}{x+2} = \frac{2x+4}{x+1} \times \frac{3}{x+2} = \frac{3}{(x-1)} \times \frac{2}{(x+2)} = \frac{x+1}{5} \times \frac{3}{(x+1)(x-2)} = \frac{4}{x^2+5x+6} \times \frac{x+3}{9} = \frac{x^2-64}{4} \times \frac{2}{x+8} = \frac{4}{x^2-x-6} \times \frac{x^2+5x+6}{3} = (x-5)(x^2-1) \times \frac{1}{x^2-6x+5} = \frac{5}{x^2-6x+5} = \frac{5}{x^2-6x+5} = \frac{3}{x^2-6x+5} =$					
$\frac{3}{(x-1)} \times \frac{2}{(x+2)} = \frac{x+1}{5} \times \frac{3}{(x+1)(x-2)} = \frac{4}{x^2 + 5x + 6} \times \frac{x+3}{9} = \frac{x^2 - 64}{4} \times \frac{2}{x+8} = \frac{4}{x^2 - x - 6} \times \frac{x^2 + 5x + 6}{3} = (x-5)(x^2 - 1) \times \frac{1}{x^2 - 6x + 5} = \frac{5}{3} \times (5-x) = \frac{3}{3} $	$\frac{1}{x+2} \times (x+2) =$	$\frac{1}{x+3} \times (x-1)$	+2)(x+3) =	$\frac{1}{(x+2)(x+3)}$	(x+2) =
$\frac{3}{(x-1)} \times \frac{2}{(x+2)} = \frac{x+1}{5} \times \frac{3}{(x+1)(x-2)} = \frac{4}{x^2 + 5x + 6} \times \frac{x+3}{9} = \frac{x^2 - 64}{4} \times \frac{2}{x+8} = \frac{4}{x^2 - x - 6} \times \frac{x^2 + 5x + 6}{3} = (x-5)(x^2 - 1) \times \frac{1}{x^2 - 6x + 5} = \frac{5}{x^2 - 6x + 5$	$\frac{x+2}{x+1} \times \frac{3}{x+2} =$	$\frac{2(x+2)}{3} \times \frac{1}{3}$	6 x + 2 =	$\frac{2x+4}{x+1} \times \frac{2x+4}{x+1} \times 2x$	$\frac{3}{1+2} =$
$\frac{x^2 - 64}{4} \times \frac{2}{x + 8} = \frac{4}{x^2 - x - 6} \times \frac{x^2 + 5x + 6}{3} = (x - 5)(x^2 - 1) \times \frac{1}{x^2 - 6x + 5} =$					
$x^2 - x - 6$ 3 $(x^2 - x - 6x + 5)$	$\frac{3}{(x-1)} \times \frac{2}{(x+2)} =$	$\frac{x+1}{5} \times \frac{x}{(x-1)^2}$	$\frac{3}{+1)(x-2)} =$	$\frac{4}{x^2 + 5x}$	$\frac{x+3}{9} =$
$x^2 - x - 6$ 3 $(x^2 - 6x + 5)$					
$\frac{5}{x-5} \times (5-x) = \frac{2x^2 - x - 6}{x+3} \times \frac{x^2 - 9}{x^2 - 4}$	$\frac{x^2 - 64}{4} \times \frac{2}{x + 8} =$	$\frac{4}{x^2 - x - 6} \times \frac{x^2 + 4}{x^2 - x - 6}$	$\frac{-5x+6}{3} = (x$	$-5)(x^2-1)\times\frac{1}{x}$	$\frac{1}{x^2 - 6x + 5} =$
$\frac{5}{x-5} \times (5-x) = \frac{2x^2 - x - 6}{x+3} \times \frac{x^2 - 9}{x^2 - 4}$					
$x+3$ x^2-4	$\frac{5}{x-5} \times (5-x) =$	$2x^2 - x - \epsilon$	$5 \times \frac{x^2 - 9}{3}$		
		x + 3	x ² - 4		

C11 - 6	6.3 - Dividing Ratio	nals WS	
Divide, Si	implify and State Restricti	ions. Leave answer in factore	ed form.
$\frac{x}{3} \div \frac{5}{2} =$	7	$\div \frac{9}{2x^3} =$	$\frac{x}{2} \div \frac{2x^2 - 4x}{x + 3} =$
$\frac{3}{x^2-1}$ $\frac{1}{x}$	$\frac{5}{x-1} = \frac{1}{x^2}$	$\frac{1}{x^2 + x} \div \frac{5}{x + 1} =$	$\frac{x^2 + 5x + 6}{7} \div \frac{(x+2)}{4} =$
A 1	_1		1 4
$3x^2 - 3$	6x + 6	$2x^2 + 1$	10 1 12 2 16
$\frac{3x^2-3}{5}$	÷ 7	24 1 -	$\frac{10x + 12}{5} \div \frac{2x + 6}{5} =$
$\frac{x}{6} \div \frac{x(x)}{x}$	c + 1)	$\frac{2x^2-x}{x^2-x}$	$\frac{x-6}{2} \div \frac{x^2-4}{x^2+5x+6}$
6 ÷	2 =	x + 2	$2 x^2 + 5x + 6$

$\frac{2}{3x} + \frac{2}{3x}$ $\frac{1}{3(x-1)}$		$\frac{1}{a}$	$\frac{1}{a}$ +	$\frac{10x}{5}$	$\frac{1}{x} + \frac{2}{x}$	$\frac{2}{5} + \frac{1}{5}$	
+ 2)		$+\frac{1}{a^2}=$	$\frac{1}{b} =$	$-\frac{3x}{5} =$	=		
							5.4 -
							Add
			$\frac{1}{a}$ +				ding
	1		$\frac{1}{ab} =$				Suk
$+\frac{2}{4x} + \frac{2}{4x} + \frac{3}{3x}$	2	$\frac{1}{a^2}$		$\frac{5x}{4}$	$\frac{x}{2}$	$\frac{1}{2}$	otra
$\frac{1}{+6} =$		$+\frac{1}{ab} =$		$-\frac{3x+}{4}$	$+\frac{x}{3} =$	$+\frac{1}{3} =$	ctir
		=	$\frac{1}{ab}$	· <u>2</u> =		=	ıg Ra
			$\frac{1}{aba}$				atio
			_ = _				nals
							s W
$\frac{x}{2} + \frac{4}{4x}$ $\frac{1}{2(x - x)}$					1 2		S
$\frac{1}{x+6}$ $\frac{1}{(x+6)^{2}}$		$\frac{1}{a} + \frac{1}{a}$	$\frac{1}{ab}$ +	$\frac{1}{3x}$	$\frac{1}{2} + \frac{1}{2}$	$\frac{1}{3}$ +	
		1 2+2	$-\frac{1}{ac} =$	$\frac{3}{4x} =$	1 × 3	$\frac{1}{6}$ =	
		-					

C11 - 6.4 - Adding Subtracting Rationals WS

Simplify

$$\frac{x}{x+1} + \frac{3}{x+1} =$$

$$\frac{x}{x-2} + \frac{3}{x-2} =$$

$$\frac{4x}{x+1} + \frac{4}{x+1} =$$

$$\frac{x}{x-3} - \frac{x+2}{x-3} =$$

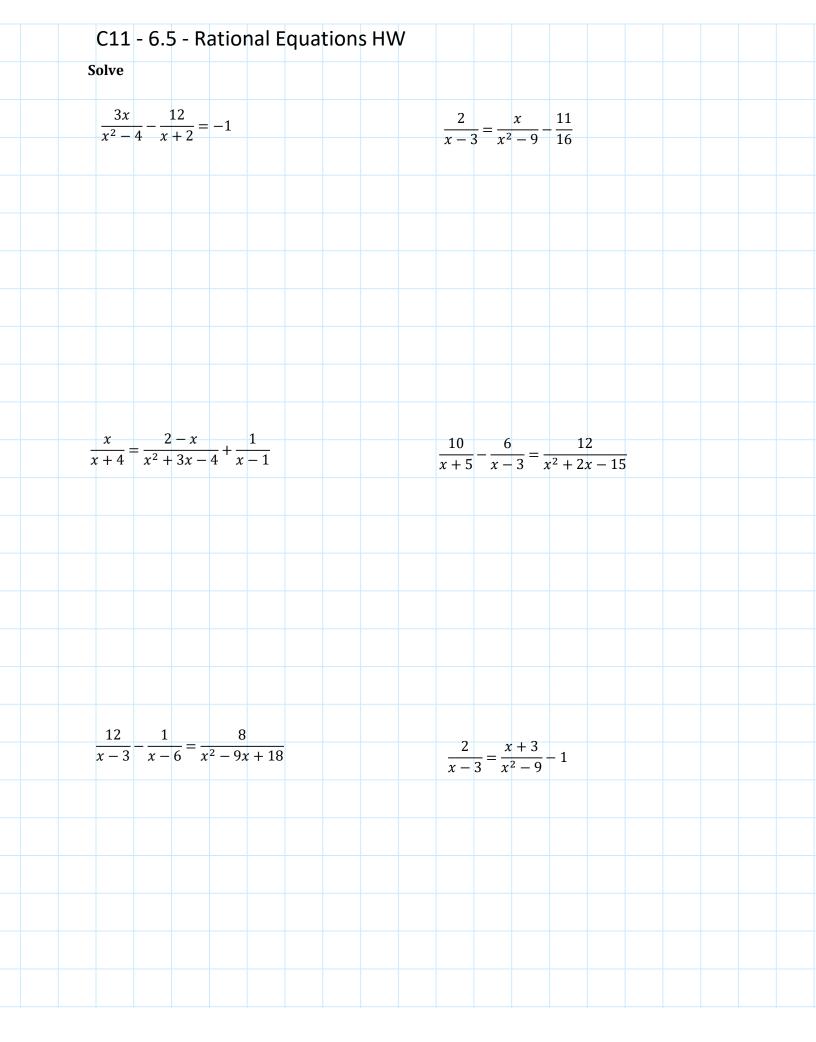
$$\frac{1}{(x-3)(x+2)} - \frac{5}{x+2} =$$

$$\frac{x}{x-2} - \frac{3}{x} =$$

$$\frac{1}{x-2} - \frac{1}{2-x} =$$

$$\frac{2}{x} + \frac{5}{x+1} =$$

$$\frac{1}{x^2 + 5x + 6} + \frac{1}{x + 2} =$$


$$\frac{9}{x^2 - 9} - \frac{4}{x - 3} =$$

$$\frac{2}{x^2 - 1} - \frac{1}{x^2 + 2x + 1} =$$

$$\frac{x+3}{x^2-x-6} + \frac{3x+9}{x^2-4} =$$

C11 - 6.4 - Be	edmas Complex Frac	ctions Rationals	s WS	
Simplify				
$\frac{x}{3} \div \frac{5}{2} =$		$\frac{x}{3}$		
3 2		$\frac{\frac{x}{3}}{\frac{5}{2}} =$		
		r		
$x \div \frac{2}{3} =$		$\frac{x}{\frac{2}{3}} =$		
3				
x		X S		
$\frac{x}{2} \div 3 =$		$\frac{x}{3}$		
$\frac{\frac{1}{x}-3}{\frac{4}{x}+1} =$	$\frac{\frac{1}{x-2} - 3}{\frac{2}{x-2} + 4} =$	$\frac{\frac{1}{x} + \frac{5}{x}}{\frac{1}{x} + \frac{2}{x}} =$	$\frac{1+\frac{1}{x}}{\frac{1}{x}} =$	
$\frac{4}{x}+1$	$\frac{2}{x-2}+4$	$\left \frac{1}{r} + \frac{2}{r}\right ^{-}$	$x-\frac{1}{x}$	

C11 - 6.5 - Ratio	onal Equations HW		
Solve			
$\frac{1}{3} + \frac{1}{x} = \frac{1}{2}$		$\frac{1}{6} + \frac{1}{x} = \frac{1}{4}$	
3 x 2		6 x 4	
·· 2× ± 1 2 2×		20 Q	
$\frac{x}{3} - \frac{2x+4}{2} = \frac{3}{4} + \frac{2x}{6}$		$\frac{20}{t} - 3 = \frac{8}{t} + 3$	
$\frac{x}{2} + \frac{3}{x} = \frac{5}{2}$		$\frac{1}{x} + \frac{1}{(x+1)} = \frac{5}{6}$	
2 x 2		\ \(\lambda \ \cdot \cdot \ \cdot \c	
		2 - v 1 1	
		$\frac{2-x}{3x} + \frac{1}{2} = \frac{1}{4x}$	
3x + 4 1 5	$600 - t = \frac{990}{3.\overline{3} - t}$	$\frac{x+3}{2} - \frac{x-5}{3} = 4$	

C11 - 6	5.6 -Hc	ses fi	lling Po	ool						
			n 4 hours. If			d, the pool	fills in 6 hou	ırs. How l	ong	
would it ta	ike to fill th	e pool if o	only hose B	were us	ed?					
			n 8 hours. If ol if only ho			l, the pool 1	fills in 12 ho	urs. How		

The sum of the reciprocals of two consecutive integers is $\frac{13}{42}$.	What are the integers?
42	
The sum of the reciprocals of two consecutive odd integers i	is $\frac{8}{4\pi}$. What are the integers?
The sum of the reciprocals of three consecutive integers is 11/6. WI	hat are the integers?

C11	1 - 6.8	ة – R	atio	nals	Wor	'd Pr	oble	₃ms:	Can	oe i	abie	;					
Ma riv	ary paddl er 16km.	les do . Wha	wn riv	rer 40k e speer	m with d of th	າ a cur e boat	rent of ?	6km/ł	า. It tal	ces her	the sa	ıme tii	me to	paddle	: up		
		Sp	eed	Distand	ce T	ime				Di	ris	,	v_c	= 6			
Do	wn-river			40	t			_		טנ	own-riv 40	0	-		> t		
	Jp-river		- 6		t						- 10 -	U	Jp-river	1	- t		
													16	j	-		

Simplify.	
12x ³	$\frac{2x+6}{x+3} =$
$\frac{12x^3}{3x} =$	x + 3
	2 4
$\frac{x^2 + 5x + 6}{x + 2} =$	$\frac{x^2-4}{x+2}=$
λ Τ Ζ	
$\frac{x+7}{x+7} =$	$\frac{x-2}{x^2+2x-8} =$
x + 7	$x^2 + 2x - 8$
$\frac{x+3}{x^2-9} =$	$\frac{2(x+5)}{5+x} =$
$x^2 - 6x + 8$	
$\frac{x^2 - 6x + 8}{x + 3} =$	$\frac{2x^2 + 5x + 3}{x + 1} =$
$2x^2 - 7x - 4$	r - 5
2x + 4	$\frac{x-5}{5-x} =$
$\frac{x^2-4}{4-x^2} =$	$\frac{2x-2}{1-x} =$
1 2	
$\frac{x^2 + 5x - 6}{-x^2 - 5x + 6}$	$\frac{(x-1)(x+1)}{(1-x)(-x-1)} =$
2	
$\frac{3-x}{x+3}$	$\frac{x+2}{-2+x} =$

$x^2 - 1$	$\frac{1}{x^2 - 1}$	$\frac{5}{x^2 + 5}$	$\overline{(x-1)}$	$\frac{4}{2x+6}$	x $x \neq 0$	Determ $\frac{2}{x}$	C11
			7)(x + 2)		1		- 6.2 -
$x^{2} - 9$	$\frac{3}{x^2-9}$	$\frac{1}{x}$	j ($\frac{\lambda}{2}$	$\frac{3}{x-1}$ $x-1 \neq 0$ $x \neq 1$	undefined	- Restr
		3x +	$\frac{x}{(x+4)}$	$\frac{x+2}{x-4}$		values	iction
x ² -	$\frac{2x}{x^2}$	2 - 10	(x-3)		$\frac{4}{x}$		ıs Rat
- 1	:						ionals
	_			$\frac{6x^2}{12x^3}$	$\frac{2}{x-2}$	2	ws
$4 - x^2$	$\frac{7x}{4-x^2}$	2x ² –	<u>(x – </u>				
		$\frac{4}{3x-5}$	9 1)(x -	2 -			
x	$\frac{8}{x}$	5	+ 1)	5 - x	$\frac{x}{2}$	x	
	3	$\overline{x^2}$	(
x ² -	$\frac{6}{x^2}$	9 + 10 <i>x</i> +	$\frac{4}{(x+2)^2}$	<u>:</u> x			
+ 4		25		32	$\frac{8}{5x}$	Ω	

C1:	1 - 6	5.3	- M	ulti	plyir	ng R	atio	nals	WS								
Mu	ltiply	, Si	mplif	y and	State	Rest	rictio	ns. Le	ave ar	ıswer	in fact	ored	form.				
3	1				2	1				$3x^3$	4						
$\frac{-\times}{4}$	$\frac{1}{2} =$	2			$\frac{3}{4x} \times$	$\frac{1}{2} =$				×	$\frac{1}{x^2} = \frac{1}{x^2}$				$\frac{2}{-}\times$	$\frac{3x}{4} =$	
$\frac{3 \times}{4 \times}$	$\frac{1}{2} =$	<u>8</u>			130						$\frac{4}{x^2} =$				5 <i>x</i>	4	
1,	-																
1							1										
\overline{x} +	$\frac{1}{2}$ × (2)	x + 1	2) =			$\frac{1}{x}$	$\frac{1}{+3}$ ×	(x +	2)(<i>x</i> +	3) =		(1)	1	2)	× (x ·	+ 2) =	
												(X	+ 2)()	(+3)			
$\frac{x+}{x}$	$\frac{2}{1} \times \frac{2}{3}$	3	-=			2((x+2)) (5 + 2 =				2x + 4	ł ;	3_		
<i>x</i> +	· 1	(+ ₄	2				3	$-\times {x}$	<u>+ 2</u> =				x + 1	\overline{x}	+ 2		
$\frac{3}{(x-}$		2	2	_		r	1 1		3					1	20	. 2	
(x -	1) ^	(x +	- 2)	_			$\frac{1}{5}$ ×	(x +	$\frac{3}{1)(x-}$	<u>2)</u> =			$\frac{1}{x^2 + 1}$	5x +	$\frac{1}{6} \times \frac{x}{1}$	$\frac{+3}{9} =$	
2																	
$\frac{x^2-}{4}$	64 —×	$\frac{2}{v \perp}$	$\frac{1}{\Omega}$ =			4		$x^2 + 5$	<i>x</i> + 6		(5)(.	2 1		1		
Т		λ	0		$\overline{x^2}$	2-x	- 6 ×	3		_	(x -	- 5)(x	(° – 1 _,	$\times \frac{1}{x^2}$	- 6 <i>x</i>	 =	
$\frac{5}{x-5}$	- v (5	_ ~	·) —														
x-5) (3	A	<i>,</i> –			2	$x^2 - x$	-6	$\langle \frac{x^2-}{x^2-} \rangle$	9							
							<i>x</i> +	3	x^2 –	4							

C11 - 6	6.3 - Dividing Ratio	nals WS	
Divide, Si	implify and State Restricti	ions. Leave answer in factore	ed form.
$\frac{x}{3} \div \frac{5}{2} =$	7	$\div \frac{9}{2x^3} =$	$\frac{x}{2} \div \frac{2x^2 - 4x}{x + 3} =$
$\frac{3}{x^2-1}$ $\frac{1}{x}$	$\frac{5}{x-1} = \frac{1}{x^2}$	$\frac{1}{x^2 + x} \div \frac{5}{x + 1} =$	$\frac{x^2 + 5x + 6}{7} \div \frac{(x+2)}{4} =$
A 1	_1		1 4
$3x^2 - 3$	6x + 6	$2x^2 + 1$	10 1 12 2 16
$\frac{3x^2-3}{5}$	÷ 7	24 1 -	$\frac{10x + 12}{5} \div \frac{2x + 6}{5} =$
$\frac{x}{6} \div \frac{x(x)}{x}$	c + 1)	$\frac{2x^2-x}{x^2-x}$	$\frac{x-6}{2} \div \frac{x^2-4}{x^2+5x+6}$
6 ÷	2 =	x + 2	$2 x^2 + 5x + 6$

C11 - 6	5.4 - Adding	Subtracting	Rationals WS	S	
Simplify					
$\frac{2}{5} + \frac{1}{5} =$		$\frac{1}{2} + \frac{1}{3} =$		1 1	
5 5		2 3		$\frac{1}{3} + \frac{1}{6} =$	
				1 1	
1 _ 2		$x \mid x$		$\frac{1}{2} + \frac{1}{2 \times 3} =$	
$\frac{1}{x} + \frac{2}{x} =$		$\frac{x}{2} + \frac{x}{3} =$			
$\frac{10x}{5} - \frac{3x}{5} =$	_	$\frac{5x}{4} - \frac{3x+2}{4}$	=	$\frac{1}{3x} + \frac{3}{4x} =$	
5 5				5x 4x	
1 1		1			
$\frac{1}{a} + \frac{1}{b} =$	$\frac{1}{a}$	$\frac{1}{ab} =$	$\frac{1}{ab} + \frac{1}{abc} =$	$\frac{1}{ab} + \frac{1}{ac} =$	
				ab ac	
$\frac{1}{a} + \frac{1}{a^2} =$	=	$\frac{1}{a^2} + \frac{1}{ab} =$		$\frac{1}{a} + \frac{1}{a+2} =$	
		u ub		a a+2	
1 2		1 2		x 1	
$\frac{1}{6x^2} + \frac{2}{3x} =$		$\frac{1}{6x} + \frac{2}{4x} =$		$\frac{x}{2} + \frac{1}{4x+6} =$	
$\frac{x}{3} + \frac{1}{3(x+2)} =$		$\frac{x}{3} + \frac{1}{3x+6} =$		$\frac{1}{2(x-2)} - \frac{1}{2}$	
$3 \overline{3(x+2)}$		3 3x + 6		$\overline{2(x-2)}$ $\overline{2}$	

C11 - 6.4 - Adding Subtracting Rationals WS

Simplify

$$\frac{x}{x+1} + \frac{3}{x+1} =$$

$$\frac{x}{x-2} + \frac{3}{x-2} =$$

$$\frac{4x}{x+1} + \frac{4}{x+1} =$$

$$\frac{x}{x-3} - \frac{x+2}{x-3} =$$

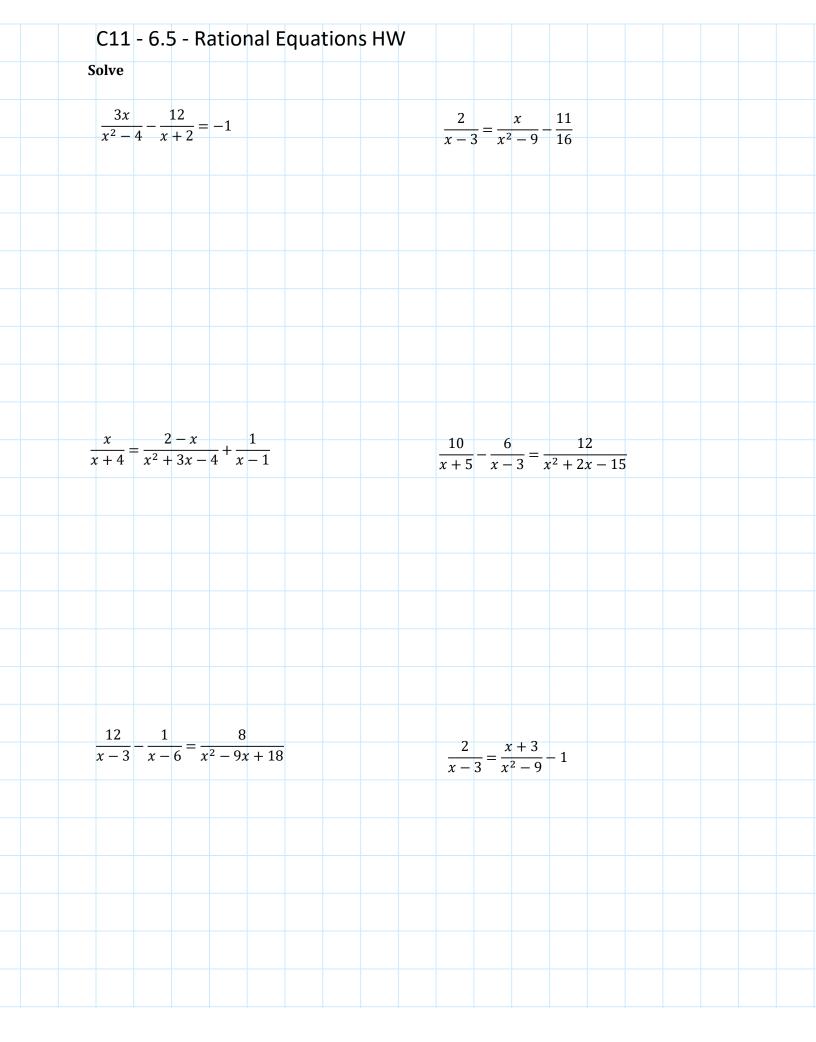
$$\frac{1}{(x-3)(x+2)} - \frac{5}{x+2} =$$

$$\frac{x}{x-2} - \frac{3}{x} =$$

$$\frac{1}{x-2} - \frac{1}{2-x} =$$

$$\frac{2}{x} + \frac{5}{x+1} =$$

$$\frac{1}{x^2 + 5x + 6} + \frac{1}{x + 2} =$$

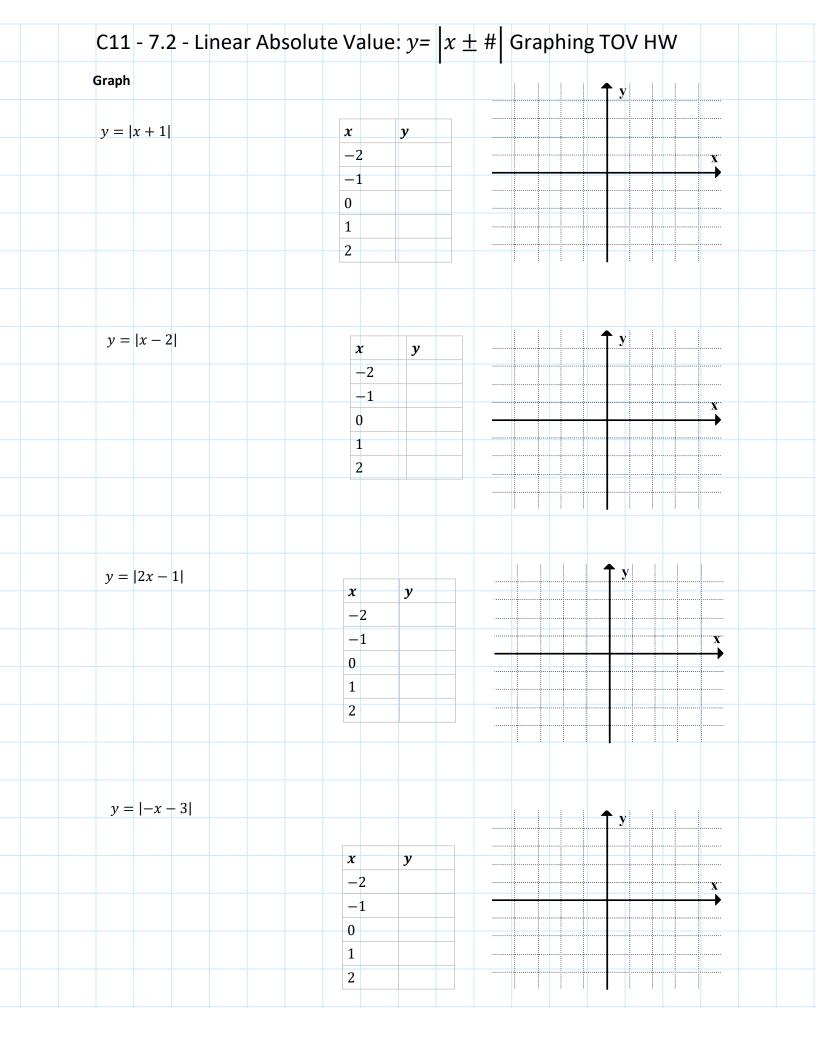

$$\frac{9}{x^2 - 9} - \frac{4}{x - 3} =$$

$$\frac{2}{x^2 - 1} - \frac{1}{x^2 + 2x + 1} =$$

$$\frac{x+3}{x^2-x-6} + \frac{3x+9}{x^2-4} =$$

C11 - 6.4 - Be	edmas Complex Frac	ctions Rationals	s WS	
Simplify				
$\frac{x}{3} \div \frac{5}{2} =$		$\frac{x}{3}$		
3 2		$\frac{\frac{x}{3}}{\frac{5}{2}} =$		
		r		
$x \div \frac{2}{3} =$		$\frac{x}{\frac{2}{3}} =$		
3				
x		X S		
$\frac{x}{2} \div 3 =$		$\frac{x}{3}$		
$\frac{\frac{1}{x}-3}{\frac{4}{x}+1} =$	$\frac{\frac{1}{x-2} - 3}{\frac{2}{x-2} + 4} =$	$\frac{\frac{1}{x} + \frac{5}{x}}{\frac{1}{x} + \frac{2}{x}} =$	$\frac{1+\frac{1}{x}}{\frac{1}{x}} =$	
$\frac{4}{x}+1$	$\frac{2}{x-2}+4$	$\left \frac{1}{r} + \frac{2}{r}\right ^{-}$	$x-\frac{1}{x}$	

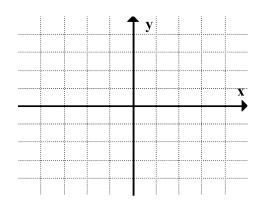
C11 - 6.5 - Ratio	onal Equations HW		
Solve			
$\frac{1}{3} + \frac{1}{x} = \frac{1}{2}$		$\frac{1}{6} + \frac{1}{x} = \frac{1}{4}$	
3 x 2		6 x 4	
·· 2× ± 1 2 2×		20 Q	
$\frac{x}{3} - \frac{2x+4}{2} = \frac{3}{4} + \frac{2x}{6}$		$\frac{20}{t} - 3 = \frac{8}{t} + 3$	
$\frac{x}{2} + \frac{3}{x} = \frac{5}{2}$		$\frac{1}{x} + \frac{1}{(x+1)} = \frac{5}{6}$	
2 x 2		\ \(\lambda \ \cdot \cdot \ \cdot	
		2 - v 1 1	
		$\frac{2-x}{3x} + \frac{1}{2} = \frac{1}{4x}$	
3x + 4 1 5	$600 - t = \frac{990}{3.\overline{3} - t}$	$\frac{x+3}{2} - \frac{x-5}{3} = 4$	



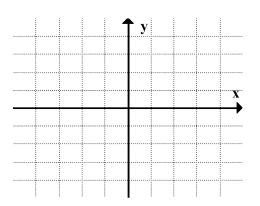
C11 -	6.6 -H	Hoses [·]	filling F	Pool						
			l in 4 hours.			sed, the p	oool fills in 6	hours. H	ow long	
would it t	ake to fil	l the pool i	f only hose	B were ι	ised?					
Two hose	s togethe	er fill a noo	l in 8 hours.	If only k	oco A is us	ed the n	ool fills in 1	2 hours 1	low	
			ool if only l			ieu, trie p	3001111131113	.z mours. r	IOW	

The sum of the reciprocals of two consecutive integers is $\frac{13}{42}$.	What are the integers?
42	
The sum of the reciprocals of two consecutive odd integers i	is $\frac{8}{4\pi}$. What are the integers?
The sum of the reciprocals of three consecutive integers is 11/6. WI	hat are the integers?

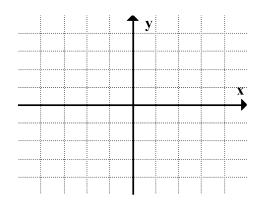
C11	- 6.8	, - R	atio	nals	Wor	d Pr	oble	ms:	Can	oe i	abie						
Mar river	ry paddl r 16km.	les do . Wha	wn riv	rer 40k e speer	m with	າ a cur e boat	rent of :?	:6km/ł	า. It tak	ces her	r the sa	ıme tir	me to	paddle	• up		
		Sp	eed	Distanc	ce T	ime				Di	ris		v_c	= 6			
Dow	vn-river			40	t					טנ	own-riv 40	1	+	 	$\Rightarrow t$		
			- 6		t						←	U	Jp-river		- t		
													16	,			


C11	- 7.1 - Abs	olute '	Valu	e: <i>x</i>	HW						
4 =	ŀ	-5 =		2 -	- 5 =	[5]	- -7 =				
- 7 =		- -8	=								
Solve a	lgebraically.										
x = 5	;	[2	x = 8			x = -	-5	x	= 2		
x - 4	= 6					x - 3	= 7				
						x + 5	0				
x+4	= 9					X T 3	= -9				
la.						100% _ 0	.034 = -5				
2x -	- 4 = 6					J J J A — 0	.034 —				

Graph and write a piecewise function

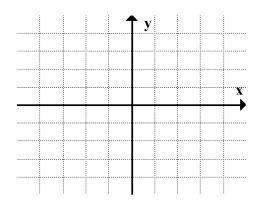

$$y = |x - 1|$$

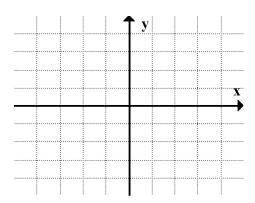
x	y
-2	
-1	
0	
1	
2	


$$y = |-x - 4|$$

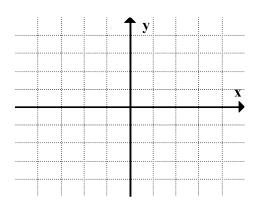
x	у
-2	
-1	
0	
1	
2	

$$y = |2x - 5|$$


x	y
-2	
-1	
0	
1	
2	

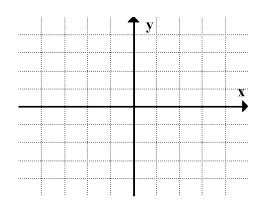

C11 - 7.3 - Linear Absolute Value Equations |x| = c HW

Solve algebraically and graphically


$$|x + 3| = 3$$

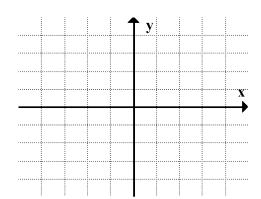
$$|x - 3| = 2$$

$$|2x - 3| = 3$$

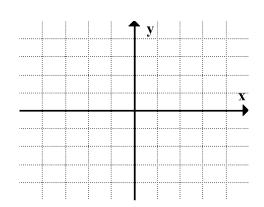


C11 - 7.4 - Quadratic Absolute Value: $y = |x \pm \#|$ Graph TOV HW

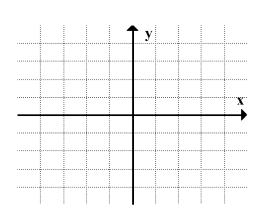
Graph


$$y = |x^2 - 1|$$

x	y
-2	
-1	
0	
1	
2	


$$y = |x^2 - 4|$$

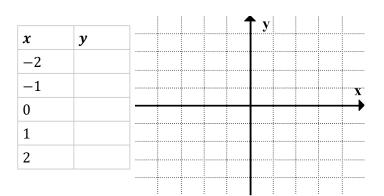
x	y
-2	
-1	
0	
1	
2	


$$y = |-x^2 + 1|$$

y

$$y = |x^2 - 2x - 3|$$

x	у
-2	
-1	
0	
1	
2	

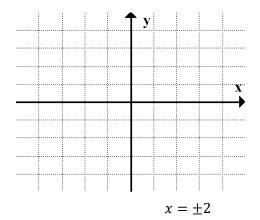


Graph and write a piecewise function

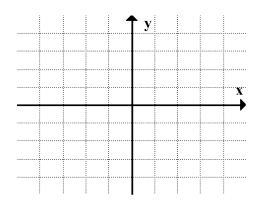
$$y = |x^2 - 4|$$

		¬		1	y		
x	y						
-2							
-1			 	 		 	 X
0							\rightarrow
1							
2			 				

$$y = |x^2 + 6x + 5|$$

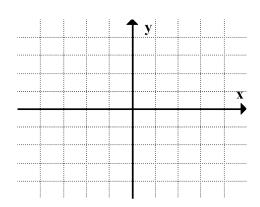

$$y = |-x^2 + 4|$$

				4	у		
x	y	 <u> </u>	<u></u>	 		<u> </u>	
-2							
-1		 		 		 	 ļ
0							_
1		 		 		 	
2		 <u>.</u>				 <u>.</u>	
	·	 <u>:</u>	<u> </u>	<u> </u>	l	 <u> </u>	


C11 - 7.5 - Quadratic Absolute Value Equations HW

Solve algebraically and graphically

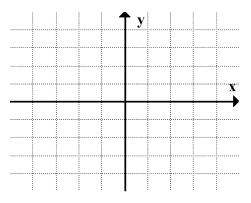
$$|x^2 - 1| = 3$$



$$|-x^2 + 1| = x + 1$$

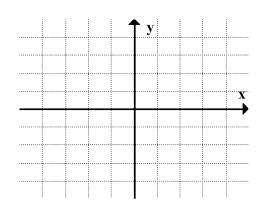
$$x = -1,0,2$$

$$|x^2 - 2x - 3| = 6$$

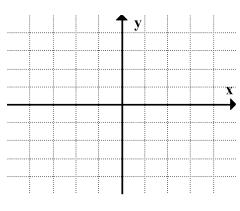


$$x = -1,3$$

C11 - 7.5 - Quadratic Absolute Value Equations HW


Solve algebraically and graphically

$$|x^2 - 5| = 4$$

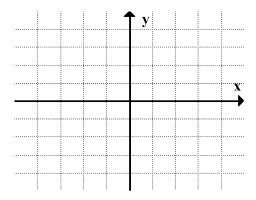

$$x = \pm 1, \pm 3$$

$$|x^2 - 4| = x - 2$$

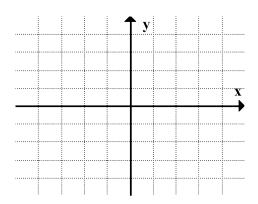
$$x = 2$$

$$|x^2 - 1| = -1$$

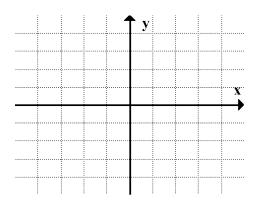
$$\neq x$$


$$|x^2 + 5x - 7| = 3$$
 Quadform

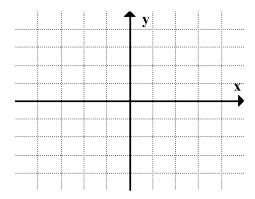
C	211 - 7.	6 -	Rec	inr	ocal	Re	stri	rtio	ns l	Not	ρς					
	nd the restr			16.	<i>J</i> CG.	110)(11.	JC1 C .	15 .							
		/ Iction	5													
	$\frac{1}{x-2}$					$\frac{1}{x^2}$	1 + 5 <i>x</i> -	- 6				$\frac{1}{x^2}$	4			
												-	-			
	$\frac{1}{x^2 + 1}$						1						1			
	X ² + 1					(x -	+ 4)(3	3x - 1)			(x +	1)(x -	-1)		
	$\frac{1}{2x^2 + 2x}$	$\frac{1}{x}$					${2x^2}$	1 - 7 <i>x</i> –	4			$\frac{1}{x^2}$	$\frac{1}{2+9}$			

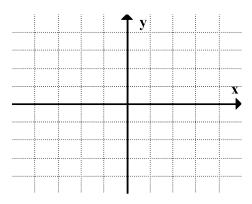

C11 - 7.7 - Linear Reciprocals HW

Graph the following and its reciprocal on the same graph, identify the equation of and draw a vertical asymptote, and label the invariant points

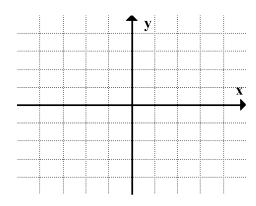

$$y = x + 2$$

$$y = x - 3$$

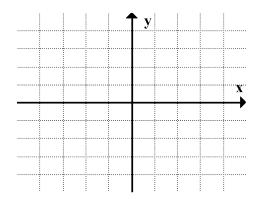

$$y = 2x - 1$$


C11 - 7.8 - Quadratic Reciprocals WS

Graph the following and its reciprocal on the same graph, identify the equation of and draw a vertical asymptote, and label the invariant points


$$y = x^2 - 4$$

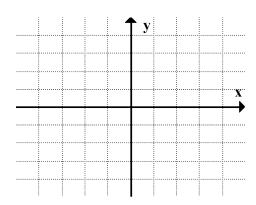
$$y = x^2 - 2x - 3$$


$$y = x^2 + 5x + 4$$

Find the intersections by substitution and graph

$$y = x + 4$$

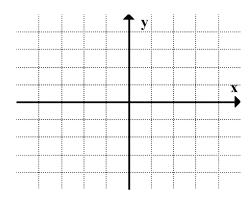
$$y = x^2 + 2$$


$$y = x^2 - 1$$

$$y = x^2 - 1 y = -\frac{1}{4}x^2 + 4$$

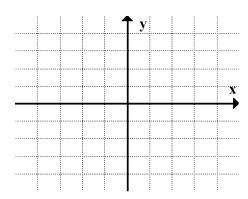
$$y = x^2 - 2x - 3$$

$$y = x^2 - 2x - 3$$
 $y = -2(x - 1)^2 - 1$

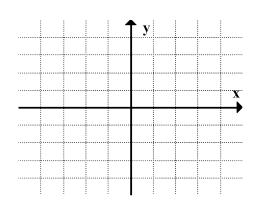


C11 - 8.3 - Intersections HW

Find the intersections by substitution and graph

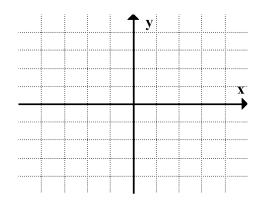

$$y = (x-2)^2 + 1$$
 $y = -(x-2)^2 + 1$

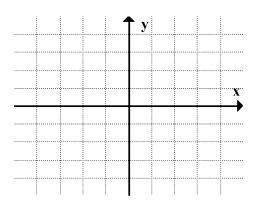
$$y = -(x - 2)^2 + 1$$


$$y = 2x^2 + 1 y = 2x^2 - 2$$

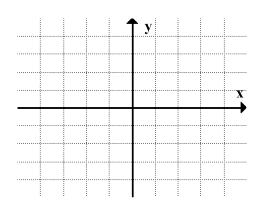
$$y = 2x^2 - 2$$

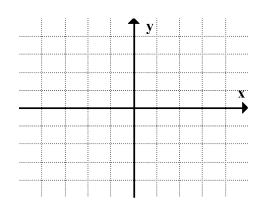
$$y = x^2 + 1$$


$$y = -x^2 - 2$$


C11 - 9.1 - Linear Inequalities In Two Variables WS

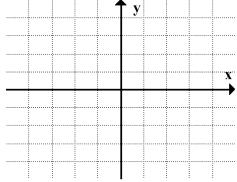
Graph the following inequalities


 $y \ge x - 1$


y < x

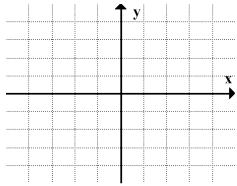
y > -x + 4

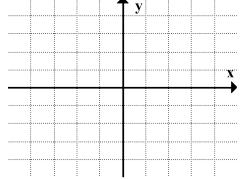
 $y \le 3x - 2$

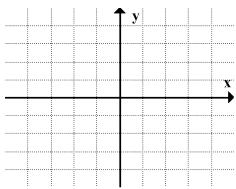


C11 - 9.2 - Linear Inequalities In One Variables WS

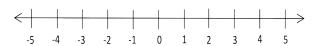
Graph the following inequalities

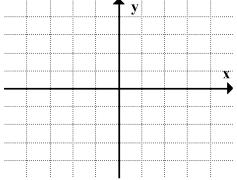

x + 4 < 0


 $-x-3 \ge 0$


 $x \le 0$

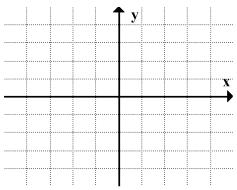
2x - 1 > 0

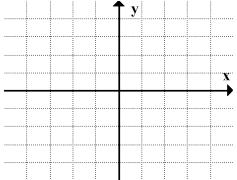




C11 - 9.2 - Quadratic inequalities In One Variables WS

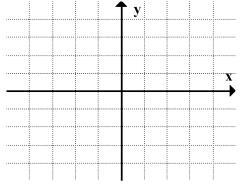
Graph the following inequalities

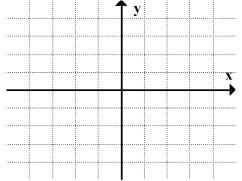

 $x^2 - 4 > 0$


 $x^2 - 4 < 0$

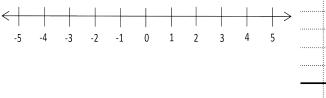
 $x^2 - 4x + 3 \ge 0$

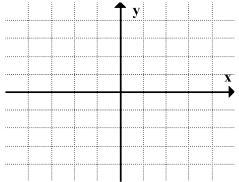
 $x^2 - 4x + 3 \le 0$



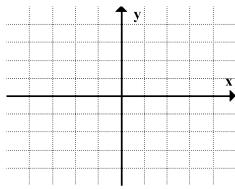

C11 - 9.2 - Quadratic Inequalities In One Variables WS

Graph the following inequalities

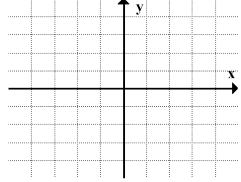


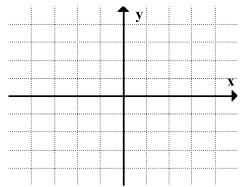




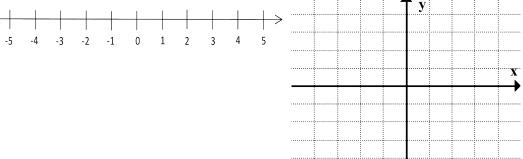

 $2x^2 + 5x - 3 > 0$

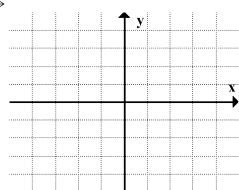

 $(2x+1)(x-3) \le 0$




C11 - 9.2 - Quadratic Inequalities In One Variables WS

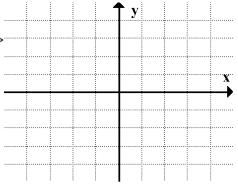
Graph the following inequalities

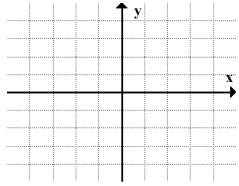




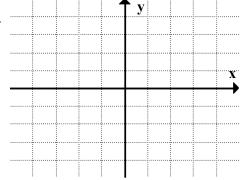
 $(x-2)^2 > 0 \qquad \longleftrightarrow \qquad$

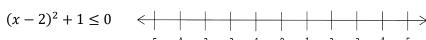
 $(x-2)^2 \le 0$

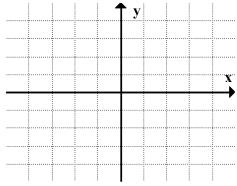



C11 - 9.2 - Quadratic Inequalities In One Variables WS

Graph the following inequalities

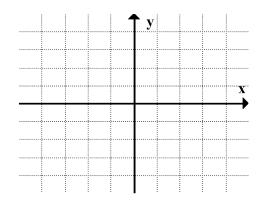


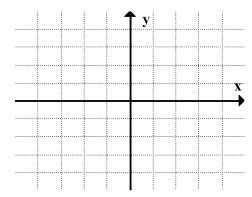


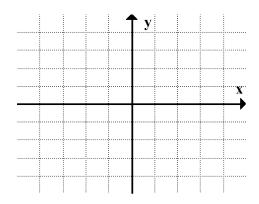


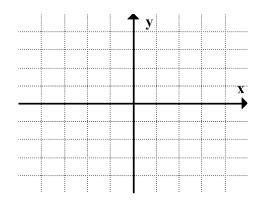
$$(x-2)^2+1>0$$

C11 - 9.3 - Quadratic Inequalities In Two Variables WS


Graph the following inequalities

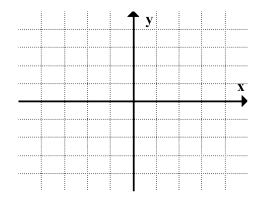

$$y \ge (x-1)^2 - 4$$

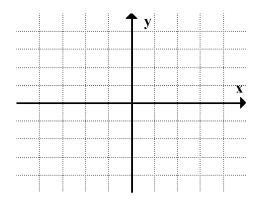

$$y > x^2 + 4$$

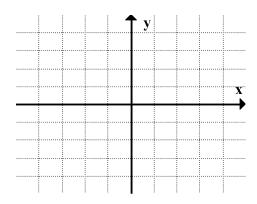

$$y \le -2x^2 + 2$$

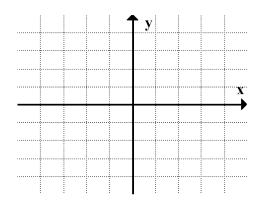
$$y < (x-1)^2 - 1$$

C11 - 9.3 - Quadratic Inequalities In Two Variables WS

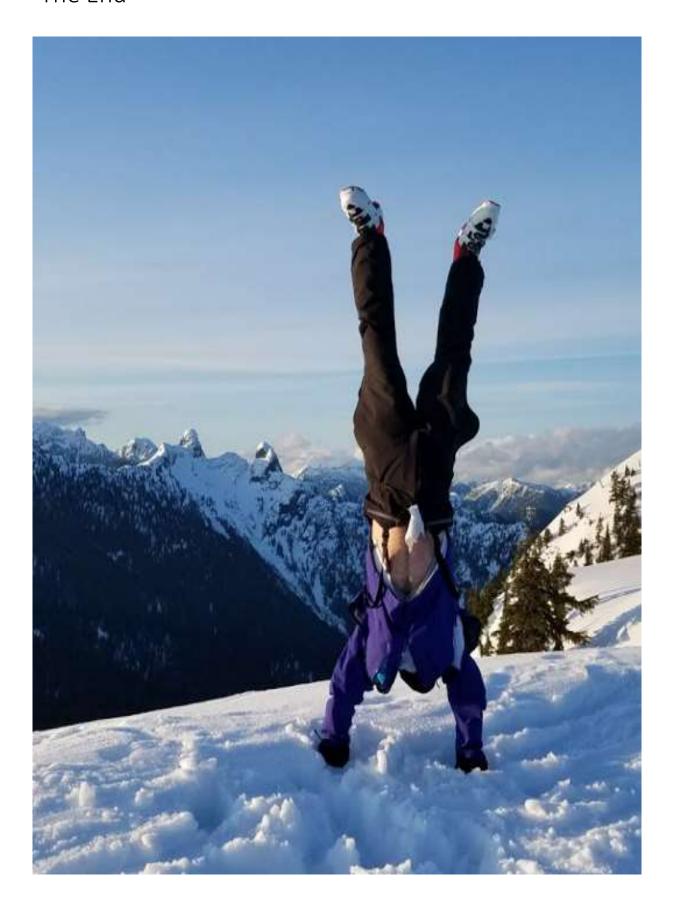

Graph the following inequalities


$$y \ge x^2 - 1$$


$$y \le x^2 + x - 2$$



$$y < 2x^2 - x - 1$$



C11	1 - 9	9.4 -	Wc	rd F	Prob	olen	าร										
Find tl	he ran	ige of d	imensi	ions of	a rect	angle v	with ar	area l	ess tha	an 15 i	m² tha	t has a	length	ı two r	neters		
more	than i	t's widt	h.										J				
Find t	the rai	nge of o	dimens	ions o	f a rec	tangle	with a	n area	of at le	east 6	m² tha	t has a	lengtl	n one	meter		
151185																	

The End

