C11-2.1- $\theta_{r}, \theta_{\text {stp }}$ Notes

θ_{r} : the "reference angle"is the angle between the terminal arm and the x-axis $\left(0^{\circ} \leq \theta \leq 90^{\circ}\right)$.
$\theta_{s t p}$: the "angle in standard position" from the principal axis (+x -axis) to the terminal arm.

Basic logic will calculate $\theta_{\text {stp }}$ and θ_{r} much more easily than using these formulas.

C11-2.1- $\pm \theta_{\text {stp }}, \theta_{\text {cot }}, \theta_{\text {pri }}$ Notes

Counter-clockwise rotation is a positive $\boldsymbol{\theta}_{\text {stp }}$

$$
\begin{aligned}
& \theta_{\text {stp }}=180^{\circ}-50^{\circ} \\
& \theta_{\text {stp }}=130^{\circ}
\end{aligned}
$$

Clockwise rotation is a negative $\boldsymbol{\theta}_{\boldsymbol{s t p}}$

$$
\begin{aligned}
& \theta_{\text {stp }}=-\left(180^{\circ}-30^{\circ}\right) \\
& \theta_{\text {stp }}=-150^{\circ}
\end{aligned}
$$

Positive Co-terminal Angles $\left(\theta_{\text {cot }}\right)$

$$
\theta_{c o t}=\theta_{s t p} \pm 360^{\circ}
$$

$\theta_{\text {cot }}=\theta_{\text {stp }} \pm 360^{\circ}$
$\theta_{c o t}=40^{\circ}+360^{\circ}$
$\theta_{c o t}=400^{\circ}$
$\theta_{s t p}=40^{\circ}, \theta_{s t p}=400^{\circ}$

$$
\theta_{\text {cot }}=40^{\circ}, 400^{\circ}, 760^{\circ}, 1120^{\circ}, 1480^{\circ}, \ldots
$$

Negative Co-terminal Angles $\left(\theta_{\text {cot }}\right)$

$$
\begin{gathered}
\theta_{\text {cot }}=\theta_{s t p} \pm 360 \\
\theta_{\text {cot }}=-320-360 \\
\theta_{\text {cot }}=-680^{\circ}
\end{gathered}
$$

$$
\theta_{\text {cot }}=40^{\circ},-320^{\circ},-680^{\circ},-1040^{\circ},-1400^{\circ}, \ldots
$$

$$
\begin{array}{ll}
\theta_{\text {principle }}=\text { smallest }+ \text { ve } \theta_{\text {stp }} \text { coterminal. } & \theta_{\text {pri }}=0 \leq \theta_{\text {cot }}<360 \\
\begin{aligned}
\theta_{\text {stp }} & =1000^{\circ} \\
\theta_{\text {pri }} & =1000^{\circ}-360^{\circ}=640^{\circ} \\
& =640^{\circ}-360^{\circ}=280^{\circ}
\end{aligned} & \square R \quad \begin{array}{l}
1000^{\circ}-2\left(360^{\circ}\right)=280^{\circ} \\
\frac{1000^{\circ}}{360^{\circ}}=2.777 \ldots \quad \text { OR } \\
0.777 \ldots \times 360^{\circ}=280^{\circ}
\end{array}
\end{array}
$$

You may need to add or subtract 360° more than once.

