## C11-3.1- Quadratics Graphing $x^{\wedge} 2$ TOV Notes

Graphing: $\quad y=x^{2}$

Table of Values

| $x$ | $y$ |
| :---: | :---: |
| -2 | 4 |
| -1 | 1 |
| 0 | 0 |
| 1 | 1 |
| 2 | 4 |
|  | $\leftarrow$ |
| $(-2,4)$ |  |
| $(-1,1)$ |  |
| $(0,0)$ |  |
| $(1,1)$ |  |
| $(2,4)$ |  |


$y=x^{2}$
$y=x^{2}$
$y=x^{2}$
$y=x^{2}$
$y=(1)^{2}$
$y=1$

$$
\begin{aligned}
& y=x^{2} \\
& y=(2)^{2} \\
& y=4
\end{aligned}
$$

Notice: the pattern from the vertex $(0,0)$ is symmetrical on both sides.
Over 1,1 squared = 1, up 1 . Back to the vertex. Over 2 , 2 squared $=4$, up 4.


Domain
$x E R$
Range

## C11-3.1-Quadratic Vertical Translation Notes $y=x^{2}+q$

Graphing: $\quad y=x^{2}+c$
$y=x^{2}+1$

Table of Values

| $x$ | $y$ |
| :---: | :---: |
| -2 | 5 |
| -1 | 2 |
| 0 | 1 |
| 1 | 2 |
| 2 | 5 |


| Pt. |
| :---: |
| $(-2,5)$ |
| $(-1,2)$ |
| $(0,1)$ |
| $(1,2)$ |
| $(2,5)$ |


$\begin{array}{lllll}y=x^{2}+1 & y=x^{2}+1 & y=x^{2}+1 & y=x^{2}+1 & y=x^{2}+1 \\ y=(-2)^{2}+1 & y=(-1)^{2}+1 & y=(0)^{2}+1 & y=(1)^{2}+1 & y=(2)^{2}+1 \\ y=4+1 & y=1+1 & y=0+1 & y=1+1 & y=4+1 \\ y=5 & y=2 & y=5 & y=2 & y=5\end{array}$

Notice: the graph of $y=x^{2}+1$ is the graph $y=x^{2}$ shifted up 1 . "c" is the $y$ intercept. " c " is only the vertex if there is no " $b$ ".


## C11-3.1- Quadratics Horizontal Translation Notes $(x-p)^{2}$

Graphing: $y=(x-p)^{2}$
$y=(x-2)^{2}$

Table of Values

| X | y | Pt. |
| :---: | :---: | :---: |
| 0 | 4 | $(0,4)$ |
| 1 | 1 | $(1,1)$ |
| 2 | 0 | $(2,0)$ |
| 3 | 1 | $(3,1)$ |
| 4 | 4 | $(4,4)$ |



| $y=(x-2)^{2}$ | $y=(x-2)^{2}$ | $y=(x-2)^{2}$ | $y=(x-2)^{2}$ |
| :--- | :--- | :--- | :--- |
| ${ }^{2}$ | $y=(x-2)^{2}$ |  |  |
| $y=((0)-2)^{2}$ | $y=((1)-2)^{2}$ | $y=((2)-2)^{2}$ | $y=((3)-2)^{2}$ |
| $y=(0-2)^{2}$ | $y=(1-2)^{2}$ | $y=(2-2)^{2}$ | $y=((4)-2)^{2}$ |
| $y=(-2)^{2}$ | $y=(-1)^{2}$ | $y=(0)^{2}$ | $y=(-1)^{2}$ |
| $y=4$ | $y=0$ | $y=(4-2)^{2}$ |  |
| $y=(2)^{2}$ |  |  |  |
| $y=1$ | $y=1$ | $y=4$ |  |

Notice: the graph of $y=(x-p)^{2}$ is the graph $y=x^{2}$ shifted right 2 . Notice we shift the opposite of " p ".


## C11-3.1-Quadratics Reflection Notes $-x^{2}$

Graphing: $y=-x^{2}$
$y=-x^{2}$

Table of Values

| $x$ |  | $y$ |
| :---: | :---: | :---: |
| -2 |  | -4 |
| -1 |  | -1 |
| 0 |  | 0 |
| 1 |  | -1 |
| 2 |  | -4 |


| Pt. |
| :---: |
| $(-2,-4)$ |
| $(-1,-1)$ |
| $(0,0)$ |
| $(1,-1)$ |
| $(2,-4)$ |

$$
y=-x^{2}
$$


$y=-x^{2} \quad y=-x^{2} \quad y=-x^{2}$
$y=-(-2)^{2}$
$y=-4$
$y=-(-1)^{2}$
$y=-1$
$y=-(0)^{2}$
$y=-4$
$y=-x^{2}$
$y=-(1)^{2}$
$y=-1$

$$
\begin{aligned}
& y=-x^{2} \\
& y=-(2)^{2} \\
& y=-4
\end{aligned}
$$

Notice: The graph of $y=-x^{2}$ is the graph of $y=x^{2}$ opening downwards.
Over 1, 1 squared = 1, down 1. Back to the vertex. Over 2, 2 squared = 4, down 4.

$$
y=x^{2}
$$



$$
y=-x^{2}
$$

