C11-3.6-Product of Numbers is a Min Notes

The difference between two numbers is $\mathbf{1 0}$. Their product is a minimum.

Let $a=1$ st \#

Let $b=2 n d$ \#
(1) $a-b=10$
(2) $a \times b=$ minimum $a \times b=m$ $y=a \times b$

$$
\begin{aligned}
a-b & =10 \\
+b & +b \\
a & =(10+b)
\end{aligned}
$$

$$
\begin{aligned}
& y=a \times b \\
& y=(10+b) \times b \\
& y=10 b+b^{2} \\
& y=b^{2}+10 b
\end{aligned}
$$

Let statements: get used to using variables other than x and y

Equation 1, equation 2.
The minimum or maximum will be y.

Equation \#1

Isolate a variable
Equation \#2
Substitute the
isolated variable
Complete the square.

$$
\begin{aligned}
& y=b^{2}+10 b
\end{aligned}
$$

$$
y=\left(b^{2}+10 b+25-25\right)
$$

$\left(\frac{b}{2}\right)^{2}=\left(\frac{10}{2}\right)^{2}=(5)^{2}=25$

$$
y=\left(b^{2}+10 b+25\right)-25
$$

$$
y=(b+5)^{2}-25
$$

The minimum product is -25 .

The

(x, y)
(b, min)

Substitute into the other equation.

List the two numbers and the minimum.

C11-3.6-Product of Numbers is a Min Notes

Two numbers differ by $\mathbf{1 0}$. The product of the larger number and twice the smaller number is a minimum. What are the numbers?

```
Let a=1st#
Let b=2nd #
\[
\text { Let } b=2 n d \#
\]
```

(1) $a-b=10$

$$
\text { (2) } \begin{aligned}
a \times 2 b & =\text { minimum } \\
a \times 2 b & =\text { minimum } \\
y & =a \times 2 b
\end{aligned}
$$

$$
\begin{aligned}
a-b & =10 \\
a & =10+b
\end{aligned}
$$

$$
\begin{aligned}
& y=a \times 2 b \\
& y=(10+b) \times 2 b \\
& y=20 b+2 b^{2} \\
& y=2 b^{2}+20 b
\end{aligned}
$$

Let statements:

$$
y=2\left(b^{2}+10 b+25-25\right)
$$

$$
y=2\left(b^{2}+10 b+25\right)-50
$$

$$
y=2(b+5)^{2}-50
$$

$$
\begin{aligned}
a & =10+b \\
a & =10-5 \\
a & =5 \\
a & =5 \\
b & =-5
\end{aligned}
$$

Substitute b into the other equation.

[^0]
C11-3.6-Sum of Squares is a Min Notes

Two numbers sum to 8 . The sum of their squares is a minimum.

Let $a=1$ st \#
Let $b=2 n d$ \#
(1) $a+b=8$
(2) $a^{2}+b^{2}=$ minimum $a^{2}+b^{2}=\operatorname{minimum} y$ $y=a^{2}+b^{2}$

$$
\begin{aligned}
a+b & =8 \\
-b & -b \\
a & =8-b \\
a & =(8-b)
\end{aligned}
$$

$$
\begin{aligned}
& y=a^{2}+b^{2} \\
& y=(8-b)^{2}+b^{2} \\
& y=64-16 b+b^{2}+b^{2} \\
& y=2 b^{2}-16 b+64
\end{aligned}
$$

$$
\begin{aligned}
& y=2 b^{2}-16 b+64 \\
& y=2\left(b^{2}-8 b\right)+64 \\
& y=2\left(b^{2}-8 b+16-16\right)+64 \\
& y=2\left(b^{2}-8 b+16\right)+64-32 \\
& y=2(b-4)^{2}+32
\end{aligned}
$$

$$
\text { Vertex }=(4,32)
$$

$$
\begin{aligned}
& a=8-b \\
& a=8-(4) \\
& a=4
\end{aligned}
$$

$$
\begin{aligned}
& a=4 \\
& b=4
\end{aligned}
$$

The minimum product is 32 .

Let statements:

Equation 1, equation 2.
The minimum or maximum will be y.

Equation \#1

Isolate a variable

Equation \#2
Substitute the isolated variable

Complete the square.
$\left(\frac{b}{2}\right)^{2}=\left(\frac{8}{2}\right)^{2}=(4)^{2}=16$

Substitute b into the other equation.

List the two numbers and the maximum.

C11-3.6-Product of Numbers is a Max Notes

The sum of two times one number and six times another is sixty. Find the numbers if their product is a maximum.

Let $a=1$ st \#
Let $b=2 n d$ \#
(1) $2 a+6 b=60$

$$
\text { (2) } \begin{aligned}
a \times b & =\text { maximum } \\
a \times b & =\text { maximum } y \\
y & =a \times b
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 a}{2}+\frac{6 b}{2}=\frac{60}{2} \\
& a+3 b=30 \\
& a=30-3 b
\end{aligned}
$$

$$
\begin{aligned}
& y=a \times b \\
& y=(30-3 b) \times b \\
& y=30 b-3 b^{2} \\
& y=-3 b^{2}+30 b
\end{aligned}
$$

$$
\begin{aligned}
& y=-3 b^{2}+30 b \\
& y=-3\left(b^{2}-10 b+25-25\right) \\
& y=-3\left(b^{2}-10 b+25\right)+75 \\
& y=-3(b-5)^{2}+75
\end{aligned}
$$

$$
\text { Vertex }=(5,75)
$$

$$
\begin{aligned}
& a=30-3 b \\
& a=30-3(5) \\
& a=15 \\
& a=15 \\
& b=5
\end{aligned}
$$

Let statements:

Equation 1, equation 2.
The minimum or maximum will be y.

Equation \#1

Isolate a variable

Equation \#2
Substitute the
isolated variable

Complete the square.
$\left(\frac{b}{2}\right)^{2}=\left(\frac{10}{2}\right)^{2}=(5)^{2}=25$

Substitute b into the other equation.

List the two numbers and the maximum.

[^0]: The minimum product is -50 .

