C11 - 3.6 - Product of Numbers is a Min Notes

The difference between two numbers is 10. Their product is a minimum.

C11 - 3.6 - Product of Numbers is a Min Notes

Two numbers differ by 10. The product of the larger number and twice the smaller number is a minimum. What are the numbers?

Let a = 1st #Let statements: Let b = 2nd # $a \times 2b = minimum$ **(1)***a*-*b*= 10Equation 1, equation 2. $a \times 2b = minimum y$ The minimum or maximum will be y. $y = a \times 2b$ Equation #1 a - b = 10a = 10 + bIsolate a variable $y = a \times 2b$ Equation #2 $y = (10 + b) \times 2b$ Substitute the $y = 20b + 2b^2$ isolated variable $y = 2b^2 + 20b$ x 7 $y = 2b^2 + 20b$ Complete the square. $\left(\frac{b}{2}\right)^2 = \left(\frac{10}{2}\right)^2 = (5)^2 = 25$ $y = 2(b^2 + 10b + 25 - 25)$ $y = 2(b^2 + 10b + 25) - 50$ $y = 2(b+5)^2 - 50$ Vertex = (-5, -50) Minimum b Substitute b into the other a = 10 + bequation. a = 10 - 5a = 5a = 5List the two numbers and = the minimum. The minimum product is -50.

C11 - 3.6 - Sum of Squares is a Min Notes

Two numbers sum to 8. The sum of their squares is a minimum.

Let $a = 1st \#$ Let $b = 2nd \#$			Let statements:
1 a + b = 8	2	a2 + b2 = minimum a2 + b2 = minimum y y = a2 + b2	Equation 1, equation 2. The minimum or maximum will be y.
a + b = 8 -b - b a = 8 - b a = (8 - b)			Equation #1 Isolate a variable
		$y = a^{2} + b^{2}$ $y = (8 - b)^{2} + b^{2}$ $y = 64 - 16b + b^{2} + b^{2}$ $y = 2b^{2} - 16b + 64$	Equation #2 Substitute the isolated variable
		$y = 2b^{2} - 16b + 64$ $y = 2(b^{2} - 8b) + 64$ $y = 2(b^{2} - 8b + 16 - 16) + 64$ $y = 2(b^{2} - 8b + 16) + 64 - 32$ $y = 2(b - 4)^{2} + 32$	Complete the square. $\left(\frac{b}{2}\right)^2 = \left(\frac{8}{2}\right)^2 = (4)^2 = 16$
		Vertex = (4, 32) b Minimum	
a = 8 - b a = 8 - (4) a = 4)		Substitute b into the othe equation.
$\begin{pmatrix} a=4\\ b=4 \end{pmatrix}$			List the two numbers a the maximum.

The minimum product is 32.

er

nd

C11 - 3.6 - Product of Numbers is a Max Notes

The sum of two times one number and six times another is sixty. Find the numbers if their product is a maximum.

Let $a = 1st \#$ Let $b = 2nd \#$		Let statements:
1 2a + 6b = 60 2	$a \times b = maximum$ $a \times b = maximum y$ $y = a \times b$	Equation 1, equation 2. The minimum or maximum will be y.
$\frac{2a}{2} + \frac{6b}{2} = \frac{60}{2}$ a + 3b = 30 a = 30 - 3b		Equation #1 Isolate a variable
	$y = a \times b$ $y = (30 - 3b) \times b$ $y = 30b - 3b^{2}$ $y = -3b^{2} + 30b$	Equation #2 Substitute the isolated variable
	$y = -3b^{2} + 30b$ $y = -3(b^{2} - 10b + 25 - 25)$ $y = -3(b^{2} - 10b + 25) + 75$ $y = -3(b - 5)^{2} + 75$	Complete the square. $\left(\frac{b}{2}\right)^2 = \left(\frac{10}{2}\right)^2 = (5)^2 = 25$
	Vertex = (5, 75) b Maximum	
a = 30 - 3b a = 30 - 3(5) a = 15		Substitute b into the other equation.
a = 15 $a = 15$ $b = 5$		List the two numbers and the maximum.

The maximum product is 75

(