C11-3.7-Fence w/ wall Split in Two

A rectangular fence that is split in half is against a wall. The total fencing length is 42 m . What is the max area of the fence?

```
Let w = width
Let l= length
```

$$
F=l+3 w
$$

$$
\begin{aligned}
A & =l \times w \\
\max & =l \times w \\
y & =l \times w
\end{aligned}
$$

$$
\begin{aligned}
& P=l+3 w \\
& 42=l+3 w \\
&-3 w-3 w \\
& 42-3 w=l \\
& l=42-3 w
\end{aligned}
$$

$$
\begin{aligned}
& A=l \times w \\
& y=(42-3 w) \times w \\
& y=42 w-3 w^{2} \\
& y=-3 w^{2}+42 w \\
& y=-3\left(w^{2}-14 w\right) \\
& y=-3\left(w^{2}-14 w+49-49\right) \\
& y=-3\left(w^{2}-14 w+49\right)+147 \\
& y=-3(w-7)^{2}+147
\end{aligned}
$$

Let statements:

Equation 1, equation 2. The minimum or maximum will be y.

Equation \#1

Isolate a variable

Equation \#2
Substitute the isolated variable

Complete the square.
$\left(\frac{b}{2}\right)^{2}=\left(\frac{-14}{2}\right)^{2}=(7)^{2}=49$

Vertex: $(7,147)$
$l=42-3 w$

$l=42-3(7)$
$l=21$
length $=21 \mathrm{~m}$
width $=7 \mathrm{~m}$

Max area $=147 \mathrm{~m}^{2}$

