C11-3.1-Graph Stand Form TOV WS $\left(x^{2}+q\right)$

Graph the following equations using a table of values. State the Vertex.

$$
y=x^{2}
$$

$y=x^{2}-4$

$y=x^{2}+2$

$$
y=x^{2}-1
$$

C11-3.1-Graphing Vertex Form TOV WS (a=1)

Graph the following equations using a table of values, on graph paper. State the Vertex. Choose increments away from Vertex.

$y=(x+2)^{2}$

\boldsymbol{x}	\boldsymbol{y}

$$
y=(x-1)^{2} \longrightarrow y=(x-1)^{2}-0
$$

$y=(x-3)^{2}$

\boldsymbol{x}	\boldsymbol{y}

C11-3.1 - Graph Stand Form TOV WS (-ax ${ }^{2}$)

Graph the following equations using a table of values, on graph paper. State the Vertex. Choose your own increments.
$y=-x^{2}+4$
$y=-x^{2}$
$y=-x^{2}+1$

C11-3.2 - Graph Stand Form TOV WS ($a x^{2}$)

Graph the following equations using a table of values, on graph paper. State the Vertex. Choose your own increments.

$$
y=2 x^{2}
$$

\boldsymbol{x}	\boldsymbol{y}

$y=2 x^{2}-2$

\boldsymbol{x}	\boldsymbol{y}

$y=2 x^{2}+2$

$y=3 x^{2}-3$

\boldsymbol{x}	\boldsymbol{y}

C11-3.2 - Graph Stand Form TOV WS ($a x^{2}$)

Graph the following equations using a table of values. State the Vertex.

$$
y=x^{2}
$$

$y=2 x^{2}$

\boldsymbol{x}	\boldsymbol{y}

$y=\frac{1}{2} x^{2}$

$y=3 x^{2}-1$

\boldsymbol{x}	\boldsymbol{y}

C11-3.2 - Graph Stand Form TOV WS $\left(\frac{1}{2} x^{2}\right)$

Graph the following equations using a table of values, on graph paper. State the Vertex. Choose your own increments.
$y=\frac{1}{2} x^{2}$

$y=\frac{1}{2} x^{2}-4$

\boldsymbol{x}	\boldsymbol{y}

$y=\frac{1}{2} x^{2}-8$

$y=\frac{1}{4} x^{2}+1$

C11-3.2 - Graphing Vertex Form TOV WS $(a=-1)$

Graph the following equations using a table of values, on graph paper. Choose your own increments.

$$
y=(x-2)^{2}-4
$$

$$
y=(x+1)^{2}-4
$$

$y=(x-2)^{2}-1$

$y=(x+5)^{2}-1$

\boldsymbol{x}	\boldsymbol{y}

C11-3.2 - Graphing Vertex Form TOV WS $(a \neq 1)$

Graph the following equations using a table of values, on graph paper. Choose your own increments.

$$
y=2(x+1)^{2}+1
$$

$$
y=2(x+2)^{2}+3
$$

$y=\frac{1}{2}(x-1)^{2}-2$

$y=3(x+1)^{2}+2$

C11-3.2 - Graphing Vertex Form TOV WS ($a=-\#$)

Graph the following equations using a table of values, on graph paper. Choose your own increments.

$$
y=-(x+1)^{2}+1
$$

$$
y=-2(x+2)^{2}-2
$$

$$
y=-\frac{1}{2}(x-1)^{2}+2
$$

$y=-3(x+1)^{2}+3$

\boldsymbol{x}	\boldsymbol{y}

C11-3.3-Foil HW

Multiply Out

$$
\begin{array}{l|l}
y=(x+3)^{2} & y=(x-2)^{2}
\end{array}
$$

$$
y=\left(x+\frac{1}{2}\right)^{2}
$$

$$
y=(x+4)^{2}-3
$$

$$
y=(x-2)^{2}+1
$$

$$
y=\left(x+\frac{1}{3}\right)^{2}+\frac{1}{2}
$$

$y=2(x-3)^{2}-1$
$y=2(x+1)^{2}+1$
$y=2(x-2)^{2}-2$
$y=-(x-4)^{2}-1$
$y=-2(x-3)^{2}+2$
$y=-\frac{1}{2}(x+2)^{2}-3$

C11-3.3-Completing the Square/Perfect Square HW

What value of " c " makes the following a perfect square, factor and write as a perfect square and the vertex: (x, y) and sketch a graph.

$$
y=x^{2}+6 x+c
$$

Complete the square and write the vertex: (x, y) and sketch a graph.
$y=x^{2}+6 x+5$

$$
y=2 x^{2}-8 x+9
$$

$y=x^{2}-8 x+c \quad y=x^{2}-4 x-5$
$y=2 x^{2}-10 x$
$y=-2 x^{2}-12 x-15$
$y=x^{2}+4 x+1 \quad y=x^{2}+8 x$
$y=\frac{1}{2} x^{2}+4 x+2 \quad y=2 x^{2}-6 x+17$

C11-3.3-Completing the Square/Perfect Square HW

What value of " c " makes the following a perfect square, factor and write as a perfect square.

$$
y=x^{2}+\frac{1}{2} x+c \quad y=x^{2}-\frac{2}{3} x+c
$$

Complete the square and write the vertex: (x, y).
$y=x^{2}+\frac{1}{2} x+5$
$y=x^{2}+\frac{1}{4} x+1$
$y=x^{2}-\frac{3}{2} x+4$
$y=x^{2}+\frac{2}{3} x$
$y=\frac{1}{2} x^{2}-2 x+9$
$y=2 x^{2}-\frac{2}{3} x+17$
$y=-2 x^{2}-\frac{3}{2} x-15$

$$
y=2 x^{2}-.05 x
$$

C11-3.4 - Find Equation in Vertex Form HW

Find equation in Vertex Form and graph.

Vertex: $(1,-4)$
Point: $(2,-3)$

Vertex: $(-1,-2)$
Point: $(1,2)$

Vertex: $(3,-4)$
Point: $(2,-2)$

Vertex: $(2,1)$
$y-i n t=-3$

C11-3.5-Vertex: $\left(-\frac{b}{2 a}, y\right)$ Quadratics in Standard Form WS

Find the Vertex

$$
\text { Vertex }=\left(\frac{-b}{2 a}, y\right)
$$

Vertex $=\left(\frac{-b}{2 a}, y\right)$
$y=x^{2}-6 x-7$
$y=x^{2}+4 x-5$
$y=x^{2}+8 x+7$
$y=x^{2}+6 x-16$
$y=x^{2}-2 x-15$
$y=x^{2}-10 x+9$
$y=2 x^{2}-12 x-14$
$y=4 x^{2}+6 x-3$
$y=4 x^{2}+2 x-1$

$$
y=x^{2}+\frac{1}{2} x+5 \quad y=2 x^{2}-\frac{1}{2} x+9
$$

$$
y=-2 x^{2}-.05 x
$$

C11-3.6- Quadratic Word Problems

Two numbers have a difference of 8 . Their product is a minimum. Sketch a Graph and Find the numbers.

Two numbers differ by 10. The product of the larger number and twice the smaller number is a minimum. Sketch a Graph and Find the numbers.

Two numbers sum to 8 . The sum of their squares is a minimum. Sketch a Graph and Find the numbers.

C11-3.7- Quadratic Word Problems

Jack has 60 m of fencing to build a three sided fence on the side of his house. Determine the maximum possible area of the fenced area, and the dimensions of the fence.

A rectangular 3 sided fence that is split in half is against a wall. The total fencing length is 42 m . What is the max area of the fence and dimensions?

C11-3.8-Bridge Find Equation HMK

A bridge has pillars 20 m tall and are 80 m apart. The maximum at the center of the bridge is 60 m tall. Find the equation of the parabolic bridge. What is the height 6 m away from each pillar.

