C11 - 3.1 - Graph Stand Form TOV WS $(x^2 + q)$

Graph the following equations using a table of values. State the Vertex.

 $y = x^2$

x	у	

<i>y</i> =	x^2	—	4
------------	-------	---	---

x	У	

x	у	

		y		
				X

C11 - 3.1 - Graphing Vertex Form TOV WS (a=1)

Graph the following equations using a table of values, on graph paper. State the Vertex. Choose increments away from Vertex.

C11 - 3.1 - Graph Stand Form TOV WS $(-ax^2)$

Graph the following equations using a table of values, on graph paper. State the Vertex. Choose your own increments.

C11 - 3.2 - Graph Stand Form TOV WS (ax^2)

Graph the following equations using a table of values, on graph paper. State the Vertex. Choose your own increments.

C11 - 3.2 - Graph Stand Form TOV WS (ax^2)

Graph the following equations using a table of values. State the Vertex.

C11 - 3.2 - Graph Stand Form TOV WS $(\frac{1}{2}x^2)$

Graph the following equations using a table of values, on graph paper. State the Vertex. Choose your own increments.

C11 - 3.2 - Graphing Vertex Form TOV WS (a = -1)

Graph the following equations using a table of values, on graph paper. Choose your own increments.

					 -		
$()^2$	x	y			Î	у	
$(x-2)^2 - 4$							
					-		
					↑	у	
							<u> </u>
2	x	y					
$(+1)^2 - 4$					 		
					Ī		
						1	
					↑	` y	
$2)^{2}$ 1	v	17		<u>.</u>	 † †	•	
$(-2)^2 - 1$	x	У			 † – – †		+
					 		
				ļ	 ļļ		
				ļ	 <u> </u>		
			-		ſ		
				·····			
			_		Ī		
⊦ 5) ² – 1	x]				
+ 5) ² – 1	<i>x</i>	y	 				
- 5) ² — 1	<i>x</i>	y					
- 5) ² – 1	x	y					
- 5) ² – 1	x						
- 5) ² – 1	x	y					
⊦ 5) ² – 1	x	y					
+ 5) ² – 1	x						
+ 5) ² – 1	x	y					
+ 5) ² – 1	x	y					
- 5) ² — 1	x	y					

C11 - 3.2 - Graphing Vertex Form TOV WS ($a \neq 1$)

Graph the following equations using a table of values, on graph paper. Choose your own increments.

 $y = 2(x+1)^2 + 1$

 $y = 2(x+2)^2 + 3$

x	у	

		_	У		
					1

 $y = 3(x+1)^2 + 2$

x	y	

C11 - 3.2 - Graphing Vertex Form TOV WS (
$$a = -#$$
)

Graph the following equations using a table of values, on graph paper. Choose your own increments.

 $y = -(x+1)^2 + 1$

 $y = -2(x+2)^2 - 2$

x	y	

$y = -\frac{1}{2}($	$(x-1)^2 + 2$
2	

C11 - 3.3 - Foil HW		
Multiply Out		
$y = (x + 3)^2$	$y = (x - 2)^2$	$y = \left(x + \frac{1}{2}\right)^2$
$y = (x + 4)^2 - 3$	$y = (x-2)^2 + 1$	$y = \left(x + \frac{1}{3}\right)^2 + \frac{1}{2}$
$y = 2(x - 3)^2 - 1$	$y = 2(x+1)^2 + 1$	$y = 2(x-2)^2 - 2$
$y = -(x-4)^2 - 1$	$y = -2(x - 3)^2 + 2$	$y = -\frac{1}{2}(x+2)^2 - 3$

C11 - 3.3 - Completing the Square/Perfect Square HW

What value of "c" makes the following a perfect square, factor and write as a perfect square and the vertex: (x, y) and sketch a graph.

 $y = x^2 + 6x + c$

Complete the square and write the vertex: (x, y) and sketch a graph.

$$y = x^2 + 6x + 5$$

 $y = 2x^2 - 8x + 9$

 $y = x^2 - 8x + c$ $y = x^2 - 4x - 5$ $y = 2x^2 - 10x$ $y = -2x^2 - 12x - 15$ $y = x^2 + 4x + 1$ $y = x^2 + 8x$ $y = \frac{1}{2}x^2 + 4x + 2$ $y = 2x^2 - 6x + 17$

What value of "c" makes the following a perfect square, factor and write as a perfect square.

$$y = x^2 + \frac{1}{2}x + c$$
 $y = x^2 - \frac{2}{3}x + c$

Complete the square and write the vertex: (*x*, *y*).

$$y = x^{2} + \frac{1}{2}x + 5$$
 $y = x^{2} + \frac{1}{4}x + 1$ $y = x^{2} - \frac{3}{2}x + 4$

$$y = x^{2} + \frac{2}{3}x$$
 $y = \frac{1}{2}x^{2} - 2x + 9$ $y = 2x^{2} - \frac{2}{3}x + 17$

$$y = -2x^2 - \frac{3}{2}x - 15 \qquad \qquad y = 2x^2 - .05x$$

C11 - 3.4 - Find Equation in Vertex Form HW

Find equation in Vertex Form and graph.

Vertex: (1, -4) *Point*: (2, -3)

Vertex: (-1, -2) *Point*: (1,2)

Vertex: (3, -4) *Point*: (2, -2)

Vertex: (2,1) y - int = -3

C11 - 3.5 - Vertex: $\left(-\frac{b}{2a}, y\right)$ Quadratics in Standard Form WS

Find the Vertex
$$Vertex = \left(\frac{-b}{2a}, y\right)$$
 $Vertex = \left(\frac{-b}{2a}, y\right)$

$$y = x^2 - 6x - 7$$
 $y = x^2 + 4x - 5$ $y = x^2 + 8x + 7$

$$y = x^2 + 6x - 16$$
 $y = x^2 - 2x - 15$ $y = x^2 - 10x + 9$

$$y = 2x^2 - 12x - 14$$
 $y = 4x^2 + 6x - 3$ $y = 4x^2 + 2x - 1$

$$y = x^{2} + \frac{1}{2}x + 5$$
 $y = 2x^{2} - \frac{1}{2}x + 9$ $y = -2x^{2} - .05x$

C11 - 3.6 - Quadratic Word Problems

Two numbers have a difference of 8. Their product is a minimum. Sketch a Graph and Find the numbers.

Two numbers differ by 10. The product of the larger number and twice the smaller number is a minimum. Sketch a Graph and Find the numbers.

Two numbers sum to 8. The sum of their squares is a minimum. Sketch a Graph and Find the numbers.

C11 - 3.7 - Quadratic Word Problems

Jack has 60m of fencing to build a three sided fence on the side of his house. Determine the maximum possible area of the fenced area, and the dimensions of the fence.

A rectangular 3 sided fence that is split in half is against a wall. The total fencing length is 42 m. What is the max area of the fence and dimensions?

C11 - 3.8 - Bridge Find Equation HMK

A bridge has pillars 20 m tall and are 80 m apart. The maximum at the center of the bridge is 60 m tall. Find the equation of the parabolic bridge. What is the height 6 m away from each pillar.