C11 - 3.1 - Quadratics Graphing x^2 TOV Notes

Notice: the pattern from the vertex (0,0) is **symmetrical** on both sides.

Over 1, 1 squared = 1, up 1. Back to the vertex. Over 2, 2 squared = 4, up 4.

C11 - 3.1 - Quadratic Vertical Translation Notes $y = x^2 + q$

Graphing: $y = x^2 + c$

$$y = x^2 + 1$$

y = x2 + 1	$y = x^{2} + 1$	$y = x^{2} + 1$	$y = x^{2} + 1$	$y = x^{2} + 1$
y = (-2)2 + 1	$y = (-1)^{2} + 1$	$y = (0)^{2} + 1$	$y = (1)^{2} + 1$	$y = (2)^{2} + 1$
y = 4 + 1	y = 1 + 1	y = 0 + 1	y = 1 + 1	y = 4 + 1
y = 5	y = 2	y = 5	y = 2	y = 5
y = 5	$y \equiv z$	y = 5	y = z	y = 5

Notice: the graph of $y = x^2 + 1$ is the graph $y = x^2$ shifted up 1. "c" is the y intercept. "c" is only the vertex if there is no "b".

Graphing: $y = (x$	$(-n)^2$	
$y = (x - 2)^2$		
Table of Values		
x y	Pt.	
0 4	(0,4)	-5 -4 -3 -2 -1 (220) 3 4 5
1 1	(1,1)	
2 0 3 1	(2,0)	
3 1 4 4	(3,1)	
	(4,4)	
		$v = (x - 2)^2$ $v = (x - 2)^2$
$y = (x - 2)^2$	$y = (x - 2)^2$	$y = (x - 2)^{2} \qquad y = (x - 2)^{2} \qquad y = (x - 2)^{2}$ $y = ((2) - 2)^{2} \qquad y = ((3) - 2)^{2} \qquad y = ((4) - 2)^{2}$ $y = (2 - 2)^{2} \qquad y = (3 - 2)^{2} \qquad y = (4 - 2)^{2}$ $y = (0)^{2} \qquad y = (-1)^{2} \qquad y = (2)^{2}$ $y = 0 \qquad y = 1 \qquad y = 4$
$y = ((0) - 2)^2$ $y = (0 - 2)^2$	y = ((1) - 2) $y = (1 - 2)^2$	$y = (2 - 2)^{2}$ $y = (3 - 2)^{2}$ $y = (4 - 2)^{2}$ $y = (4 - 2)^{2}$
$y = (0^{2})^{2}$ $y = (-2)^{2}$	$y = (-1)^2$	$y = (0)^2$ $y = (-1)^2$ $y = (2)^2$ y = 1 y = 4
y = 4	y = 1	<i>y</i> <u>-</u> 0
Notice: the g	graph of $y = (x - p)^2$	² is the graph $y = x^2$ shifted right 2.
	graph of $y = (x - p)^2$ hift the opposite of "p"	² is the graph $y = x^2$ shifted right 2.
		$v = x^2$
Notice we sh	hift the opposite of "p"	· · · · · · · · · · · · · · · · · · ·
Notice we sh		$v = x^2$
Notice we sh	hift the opposite of "p"	$v = x^2$
Notice we sh	hift the opposite of "p"	$v = x^2$
Notice we sh	hift the opposite of "p"	$v = x^2$
Notice we sh	hift the opposite of "p"	$v = x^2$
Notice we sh	hift the opposite of "p"	$v = x^2$
Notice we sh	hift the opposite of "p"	$v = x^2$
Notice we sh	hift the opposite of "p"	$v = x^2$
Notice we sh	hift the opposite of "p"	$v = x^2$
Notice we sh	hift the opposite of "p"	$y = x^{2}$ $y = (x - 2)^{2}$
Notice we sh	hift the opposite of "p"	$v = x^2$

C11 - 3.1 - Quadr	atics Reflection	Notes $-x^2$
Graphing: $y = -x^2$ $y = -x^2$		$y = -x^2$
Table of Values		
x y -2 -4	Pt. (-2,-4)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
-1 -1 0 0 1 -1	(-1,-1) (0,0) (1,-1)	
2 -4	(2,-4)	
y = $-x^2$ y = $-x^2$ y = $-(-2)^2$ y = $-(-y)^2$ y = -4 y = -1	$y = -x^{2}$ $y = -(0)^{2}$ $y = -4$	$y = -x^{2} y = -x^{2} y = -(1)^{2} y = -(2)^{2} y = -1 y = -4$

Notice: The graph of $y = -x^2$ is the graph of $y = x^2$ opening downwards. Over 1, 1 squared = 1, down 1. Back to the vertex. Over 2, 2 squared = 4, down 4.

C11 - 3.2 - Quadratics Vertical Exp Notes $(2x^2, \frac{1}{2}x^2)$

Graphing: $y = ax^2$ $y = 2x^2$

Notice: the pattern from the vertex (0,0) is symmetrical on both sides.

Over 1, 1 squared = 1, 1 times 2 = 2, up 2. Back to the vertex. Over 2, 2 squared = 4, 4 times 2 = 8, up 8. In the last two steps, we are multiplying by 2 because a = 2.

$$y=\frac{1}{2}x^2$$

Table of Values

 $y = 2x^2$

C11 - 3.2 - Quadratics Compression/Expansion Summary

C11 - 3.2 - Quadratics Vertical/Horizontal Combo Notes

C11 - 3.3 - Completing the Square Notes

Standard form
$$\rightarrow$$
 Vertex form
 $y = ax^2 + bx + c \rightarrow y = a(x - p)^2 + q$ Vertex = (p, q)
 $y = x^2 + 6x + c$
 $y = x^2 + 6x + q$
 $y = x^2 + 6x + 9$
 $y = x^2 + 6x + 9$
 $y = (x + 3)(x + 3)$
 $y = (x + 3)^2$
Vertex form: Vertex = $(-3,0)$
 $a = 1$
 $y = (x^2 - 4x + 4) + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = (x^2 - 4x + 4) - 4 + 3$
 $y = 2(x^2 - 4x) + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 4x + 4) - 8 + 3$
 $y = 2(x^2 - 2)(x - 2) - 5$
Factor brackets, simplify outside
 $y = 2(x - 2)(x - 2) - 5$
Factor brackets, simplify outside
 $y = 2(x - 2)(x - 2) - 5$
Factor brackets, simplify outside
 $y = 2(x - 2)(x - 2) - 5$
Factor brackets, simplify outside
 $y = 2(x - 2)(x - 2) - 5$
Factor brackets, simplify outside
 $y = 2(x - 2)(x - 2) - 5$
Factor brackets, simplify outside
 $y = 2(x - 2)(x - 2) - 5$
Factor brackets, simplify outside
 $y = 2(x - 2)(x - 2) - 5$
Factor brackets, simplify outside
 $y = 2(x - 2)(x - 2) - 5$
Fact

Remember: $\frac{b}{2a}$ or $\frac{"new b"}{2}$ is the number that goes inside the brackets with x

C11 - 3.4 - Find Vertex Form Vertex Point Notes

Using the vertex and a point on the parabola, find the equation in Vertex Form.

Vertex: (-1, -4) and Point: (2, -3)

Vertex: (3, -2) and x - intercept = 4 (4, 0)

C11 - 3.5 - Vertex: $\left(-\frac{b}{2a}, y\right)$ Quadratics in Standard Form Notes

 $y = x^2 - 6x + 5$

$$Vertex = \left(\frac{-b}{2a}, y\right)$$

$$Vertex = \left(\frac{-(-6)}{2(1)}, y\right)$$

$$Vertex = \left(\frac{6}{2}, y\right)$$

$$Vertex = (3, y)$$

$$\left(\frac{-b}{2a}, c - \frac{b^{2}}{4a}\right)$$

 $y = x^{2} - 6x + 5$ $y = (3)^{2} - 6(3) + 5$ y = 9 - 18 + 5y = -4

Substitute 3 in for x and solve for y

$$\bigcirc Vertex = (3, -4)$$

 $y = x^2 - 6x + 5$

Vertex = (3, -4)

	x	y
	л	y
Vertex:	1	0
	2	-3
	3	-4
	4	-3
	5	0

 $y = x^{2} - 6x + 5$ $y = (1)^{2} - 6(1) + 5$ y = 1 - 6 + 5 y = 0 $y = x^{2} - 6x + 5$ $y = (2)^{2} - 6(2) + 5$ $y = (4)^{2} - 6(4) + 5$ y = 16 - 24 + 5 y = -3 y = -3 y = -3 y = 0AOS: Average Two Horizontal Points (x - int's) $x = \frac{1 + 5}{2}$ x = 3

C11 - 3.6 - Product of Numbers is a Min Notes

The difference between two numbers is 10. Their product is a minimum.

C11 - 3.6 - Product of Numbers is a Min Notes

Two numbers differ by 10. The product of the larger number and twice the smaller number is a minimum. What are the numbers?

Let a = 1st #Let statements: Let b = 2nd # $a \times 2b = minimum$ **(1)***a*-*b*= 10Equation 1, equation 2. $a \times 2b = minimum y$ The minimum or maximum will be y. $y = a \times 2b$ Equation #1 a - b = 10Isolate a variable a = 10 + b $y = a \times 2b$ Equation #2 $y = (10 + b) \times 2b$ Substitute the $y = 20b + 2b^2$ isolated variable $y = 2b^2 + 20b$ x 7 $y = 2b^2 + 20b$ Complete the square. $\left(\frac{b}{2}\right)^2 = \left(\frac{10}{2}\right)^2 = (5)^2 = 25$ $y = 2(b^2 + 10b + 25 - 25)$ $y = 2(b^2 + 10b + 25) - 50$ $y = 2(b+5)^2 - 50$ Vertex = (-5, -50) Minimum b Substitute b into the other a = 10 + bequation. a = 10 - 5a = 5a = 5List the two numbers and = the minimum. The minimum product is -50.

C11 - 3.6 - Sum of Squares is a Min Notes

Two numbers sum to 8. The sum of their squares is a minimum.

Let $a = 1st \#$ Let $b = 2nd \#$		Let statements:
$(1) a + b = 8 \qquad (2) a$	$a^{2} + b^{2} = minimum$ $a^{2} + b^{2} = minimum y$ $y = a^{2} + b^{2}$	Equation 1, equation 2. The minimum or maximum will be y.
a + b = 8 -b - b a = 8 - b a = (8 - b)		Equation #1 Isolate a variable
	$y = a^{2} + b^{2}$ $y = (8 - b)^{2} + b^{2}$ $y = 64 - 16b + b^{2} + b^{2}$ $y = 2b^{2} - 16b + 64$	Equation #2 Substitute the isolated variable
	$y = 2b^{2} - 16b + 64$ $y = 2(b^{2} - 8b) + 64$ $y = 2(b^{2} - 8b + 16 - 16) + 64$ $y = 2(b^{2} - 8b + 16) + 64 - 32$ $y = 2(b - 4)^{2} + 32$	Complete the square. $\left(\frac{b}{2}\right)^2 = \left(\frac{8}{2}\right)^2 = (4)^2 = 16$
	Vertex = (4, 32) b Minimum	
a = 8 - b a = 8 - (4) a = 4		Substitute b into the other equation.
$ \begin{array}{c} a = 4 \\ b = 4 \end{array} $		List the two numbers and the maximum.

The minimum product is 32.

C11 - 3.6 - Product of Numbers is a Max Notes

The sum of two times one number and six times another is sixty. Find the numbers if their product is a maximum.

Let $a = 1st \#$ Let $b = 2nd \#$		Let statements:
1 2a + 6b = 60	(2) $a \times b = maximum$ $a \times b = maximum y$ $y = a \times b$	Equation 1, equation 2. The minimum or maximum will be y.
$\frac{2a}{2} + \frac{6b}{2} = \frac{60}{2}$ a + 3b = 30 a = 30 - 3	3 <i>b</i>	Equation #1 Isolate a variable
	$y = a \times b$ $y = (30 - 3b) \times b$ $y = 30b - 3b^{2}$ $y = -3b^{2} + 30b$	Equation #2 Substitute the isolated variable
	$y = -3b^{2} + 30b$ $y = -3(b^{2} - 10b + 25 - 25)$ $y = -3(b^{2} - 10b + 25) + 75$ $y = -3(b - 5)^{2} + 75$	Complete the square. $\left(\frac{b}{2}\right)^2 = \left(\frac{10}{2}\right)^2 = (5)^2 = 25$
	Vertex = (5, 75) b Maximum	
a = 30 - 3b a = 30 - 3(5) a = 15		Substitute b into the other equation.
$ \begin{array}{c} a = 15 \\ b = 5 \end{array} $		List the two numbers and the maximum.

The maximum product is 75

(

C11 - 3.7 - Fence w/ River Notes (p = 8m)

A rectangular enclosure is bounded on the side of a river. 3 sides total 8m of fencing. Find the dimensions of the largest possible enclosure.

C11 - 3.7 - Fence w/ River Notes (p = 60m)

Jack has 60m of fencing to build a three sided fence on the side of his house. Determine the maximum possible area of the fenced area, and the dimensions of the fence.

C11 - 3.7 - Fence w/ wall Split in Two

A rectangular fence that is split in half is against a wall. The total fencing length is 42 m. What is the max area of the fence?

		Wall		
Let $w = width$ Let $l = length$			w	Let statements:
		l		
		ι		
F = l + 3w	$A = l \times w$ $nax = l \times w$ $y = l \times w$			Equation 1, equation 2. The minimum or maximum will be y.
	y – t × w			,
P = l + 3w $42 = l + 3w$				Equation #1 Isolate a variable
-3w - 3w $42 - 3w = l$ $l = 42 - 3w$				
	$A = l \times w$			Equation #2
	y = (42 - 3w) $y = 42w - 3w$,2		Substitute the isolated variable
	$y = -3w^{2} + 4$ $y = -3(w^{2} - y)$ $y = -3(w^{2} - y)$	14w)	.9)	Complete the square.
	$y = -3(w^2 - y)$ $y = -3(w - 7)$	14w + 49) + 1		$\left(\frac{b}{2}\right)^2 = \left(\frac{-14}{2}\right)^2 = (7)^2 = 49$
	Vertex: (7,147	')		
l = 42 - 3w l = 42 - 3(7) l = 21	W	Maximum		The maximum is the y value.
length = 21m width = 7m				List the length and width and the maximum area.
$Max area = 147 m^2$				

C11 - 3.8 - Bridge Find Equation Notes

A bridge has pillars 30 m tall and are 100 m apart. The maximum at the center of the bridge is 80 m tall. Find the equation of the parabolic bridge. What is the height 5 m away from each pillar.

C11 - 3.9 - Set Up Maximize Candy Sales Notes

A student sells candy to all of his friends. Each candy costs 6 dollars, and he has 10 friends who buy the candy each day. Every time he increases the cost by 1 dollar, 1 of his friends decides not to buy the candy. Set up how this question will look.

Let p = priceLet q = quantityLet r = revenueLet x = # of price increases

p = 6 + 1x \longrightarrow Raising the price by 1 dollar *x* times.

 $\begin{aligned} & \textit{Revenue} = \textit{price} \times \textit{quantity} \\ & \textit{If } p = 6, \quad q = 10 \quad r = 6 \times 10 \\ & r = 60 \end{aligned}$

q = 10 - 1x \longrightarrow Each x times he raises the price, 1 less friend will buy the candy.

 $r = p \times q$ $r = (6 + 1x) \times (10 - 1x)$

Price			Quan	tity
x	р		х	q
-2	4	Starting Price and Quantity (zero price increase)	-2	12
-1	5		-1	11
0	6		0	10
1	7		1	9
2	8		2	8

C11 - 3.9 - Maximize Candy Sales Notes

A student sells candy to all of his friends. Each candy costs 6 dollars, and he has 10 friends who buy the candy each day. Every time he increases the cost by 1 dollar, 1 of his friends decides not to buy the candy. What is the price that will maximize revenue?

of price increases

C11 - 3.9 - Maximize Car Sales Notes

A car salesman sells a car for \$4000, with 20 people buying the car. For every \$200 he takes off the price, 2 more people buy a car. What is the price that will maximize revenue?

C11 - 3.9 - Maximize Car Sales Notes (No Price Increases)

A car salesman sells a car for \$2000, with 20 people buying the car. For every \$200 he takes off the price, 2 more people buy a car. What is the price that will maximize revenue?

C11 - 3.10 - Max Height/Total Distance

The height vs distance of a bow and arrow shot off a cliff is represented by following equation:

 $h = -2d^2 + 8d + 10$

What is the maximum height and the distance it took to get there? Draw on a graph.

d

 $h = -2d^2 + 8d + 10$

What was the height of the cliff?

(2, 18)

(5,0)

h

(0, 10)

(-1,0)

How far did the arrow go before it hit the ground?

Find Domain and Range

 $D: [0,5] \text{ or } 0 \le x \le 5$ *R*: [0,18] or $0 \le y \le 18$

At what distance is the height 16 m (CH8)? At what distance is the height greater than 16m (CH9)?

