C11-3.1- Quadratics Graphing $x^{\wedge} 2$ TOV Notes

Graphing: $\quad y=x^{2}$

Table of Values

x	y
-2	4
-1	1
0	0
1	1
2	4
	\leftarrow
$(-2,4)$	
$(-1,1)$	
$(0,0)$	
$(1,1)$	
$(2,4)$	

$y=x^{2}$
$y=x^{2}$
$y=x^{2}$
$y=x^{2}$
$y=(1)^{2}$
$y=1$

$$
\begin{aligned}
& y=x^{2} \\
& y=(2)^{2} \\
& y=4
\end{aligned}
$$

Notice: the pattern from the vertex $(0,0)$ is symmetrical on both sides.
Over 1,1 squared = 1, up 1 . Back to the vertex. Over 2 , 2 squared $=4$, up 4.

Domain
$x E R$
Range

C11-3.1-Quadratic Vertical Translation Notes $y=x^{2}+q$

Graphing: $\quad y=x^{2}+c$
$y=x^{2}+1$

Table of Values

x	y
-2	5
-1	2
0	1
1	2
2	5

Pt.
$(-2,5)$
$(-1,2)$
$(0,1)$
$(1,2)$
$(2,5)$

$\begin{array}{lllll}y=x^{2}+1 & y=x^{2}+1 & y=x^{2}+1 & y=x^{2}+1 & y=x^{2}+1 \\ y=(-2)^{2}+1 & y=(-1)^{2}+1 & y=(0)^{2}+1 & y=(1)^{2}+1 & y=(2)^{2}+1 \\ y=4+1 & y=1+1 & y=0+1 & y=1+1 & y=4+1 \\ y=5 & y=2 & y=5 & y=2 & y=5\end{array}$

Notice: the graph of $y=x^{2}+1$ is the graph $y=x^{2}$ shifted up 1 . "c" is the y intercept. " c " is only the vertex if there is no " b ".

C11-3.1- Quadratics Horizontal Translation Notes $(x-p)^{2}$

Graphing: $y=(x-p)^{2}$
$y=(x-2)^{2}$

Table of Values

X	y	Pt.
0	4	$(0,4)$
1	1	$(1,1)$
2	0	$(2,0)$
3	1	$(3,1)$
4	4	$(4,4)$

	$y=(x-2)^{2}$	$y=(x-2)^{2}$	$y=(x-2)^{2}$	$y=(x-2)^{2}$
$y=(x-2)^{2}$	$y=(x-2$	$y=(1))^{2}$	$y=((3)-2)^{2}$	$y=((4)-2)^{2}$
$y=((0)-2)^{2}$	$y=((1)-2)^{2}$	$y=((2)-2)^{2}$	$y=(3-2)^{2}$	$y=(4-2)^{2}$
$y=(0-2)^{2}$	$y=(1-2)^{2}$	$y=(2-2)^{2}$	$y=(-1)^{2}$	$y=(2)^{2}$
$y=(-2)^{2}$	$y=(-1)^{2}$	$y=(0)^{2}$	$y=1$	$y=4$

Notice: the graph of $y=(x-p)^{2}$ is the graph $y=x^{2}$ shifted right 2 . Notice we shift the opposite of " p ".

C11-3.1-Quadratics Reflection Notes $-x^{2}$

Graphing: $y=-x^{2}$
$y=-x^{2}$

Table of Values

x		y
-2		-4
-1		-1
0		0
1		-1
2		-4

Pt.
$(-2,-4)$
$(-1,-1)$
$(0,0)$
$(1,-1)$
$(2,-4)$

$$
y=-x^{2}
$$

$y=-x^{2} \quad y=-x^{2} \quad y=-x^{2}$
$y=-(-2)^{2}$
$y=-4$
$y=-(-1)^{2}$
$y=-(0)^{2}$
$y=-x^{2}$
$y=-(1)^{2}$
$y=-1$
$y=-x^{2}$
$y=-(2)^{2}$
$y=-4$

Notice: The graph of $y=-x^{2}$ is the graph of $y=x^{2}$ opening downwards.
Over 1, 1 squared = 1, down 1. Back to the vertex. Over 2, 2 squared = 4, down 4.

$$
y=x^{2}
$$

$$
y=-x^{2}
$$

Graphing: $y=a x^{2}$
$y=2 x^{2}$

Table of Values

x	y
-2	8
-1	
2	
0	
2	
2	
2	

Pt.
$(-2,8)$
$(-1,2)$
$(0,0)$
$(1,2)$
$(2,8)$

| $y=2 x^{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| $y=2(-2)^{2}$ | $y=2(-1)^{2}$ | $y=2(0)^{2}$ | $y=2(1)^{2}$ | $y=2(2)^{2}$ |
| $y=2(4)$ | $y=2(1)$ | $y=2(0)$ | $y=2(1)$ | $y=2(4)$ |
| $y=8$ | $y=2$ | $y=0$ | $y=2$ | $y=8$ |

Notice: the pattern from the vertex $(0,0)$ is symmetrical on both sides.
Over 1,1 squared = 1,1 times $2=2$, up 2 . Back to the vertex. Over 2 , 2 squared $=4,4$ times $2=8$, up 8 . In the last two steps, we are multiplying by 2 because $a=2$.

$$
y=\frac{1}{2} x^{2}
$$

Table of Values

x	y
-2	2
-1	$\frac{1}{2}$
0	0
1	$\frac{1}{2}$
2	
2	4
$(-2,2)$	
$\left(-1, \frac{1}{2}\right)$	
$(0,0)$	
$\left(1, \frac{1}{2}\right)$	
$(2,2)$	

$y=\frac{1}{2} x^{2}$
$y=\frac{1}{2} x^{2}$
$y=\frac{1}{2}(1)^{2}$
$y=\frac{1}{2}(2)^{2}$
$y=\frac{1}{2}(1)$
$y=\frac{1}{2}(4)$
$y=\frac{1}{2}$
$y=2$

C11-3.2-Quadratics Compression/Expansion Summary

$$
y=\frac{1}{2} x^{2} \quad y=2 x^{2} \quad y=x^{2}
$$

C11-3.2-Quadratics Vertical/Horizontal Combo Notes

QFu Page 7

C11-3.3-Completing the Square Notes

$$
\begin{aligned}
& \text { Standard form } \rightarrow \text { Vertex form } \\
& y=a x^{2}+b x+c \rightarrow y=a(x-p)^{2}+q \quad \text { Vertex }=(p, q) \\
& y=x^{2}+6 x+c \\
& y=x^{2}+6 x+9 \\
& y=(x+3)(x+3) \\
& y=(x+3)^{2} \\
& \left(\frac{b}{2}\right)^{2}=\left(\frac{6}{2}\right)^{2}=(3)^{2}=9 \\
& \text { "b" divided by } 2 \\
& \text { all squared: } \\
& a=1 \\
& y=x^{2}-4 x+3 \\
& y=\left(x^{2}-4 x\right)+3 \\
& \text { Group x terms } \\
& \left(\frac{b}{2}\right)^{2}=\left(\frac{-4}{2}\right)^{2}=(-2)^{2}=4 \\
& \text { "b" divided by } 2 \\
& \text { all squared: } \\
& \text { Add and subtract inside brackets } \\
& y=\left(x^{2}-4 x+4\right)-4+3 \quad \text { Remove number not contributing to perfect square (-ve) } \\
& y=(x-2)(x-2)-1 \quad \text { Factor brackets, simplify outside } \\
& y=(x-2)^{2}-1 \\
& \text { Vertex form: Vertex }=(2,-1) \\
& y=\left(x^{2}-4 x+4-4\right)+3
\end{aligned}
$$

$a \neq 1$

$$
\begin{array}{ll}
y=2 x^{2}-8 x+3 \\
y=\left(2 x^{2}-8 x\right)+3 & \text { Group } x \text { terms } \\
y=2\left(x^{2}-4 x\right)+3 & \text { Factor out coefficient of } x^{2} \\
& \left(\frac{b}{2}\right)^{2}=\left(\frac{-4}{2}\right)^{2}=(-2)^{2}=4
\end{array}
$$

New "x" coefficient divided by 2 all squared:
$y=2(x^{2}-4 x+4-\overbrace{4}^{x 2}+3$
$y=2\left(x^{2}-4 x+4\right)-8+3$
$y=2(x-2)(x-2)-5$
$y=2(x-2)^{2}-5$

Add and subtract inside brackets

Remove number not contributing to perfect square Don't forget to multiply by "a"

Factor brackets, simplify outside

Vertex form: Vertex $=(2,-5)$

Remember: $\frac{b}{2 a}$ or "new $\frac{b \text { " }}{2}$ is the number that goes inside the brackets with x

C11-3.4-Find Vertex Form Vertex Point Notes

Using the vertex and a point on the parabola, find the equation in Vertex Form.
Vertex: $(-1,-4)$ and Point: $(2,-3)$

y	$=a(x-p)^{2}+q$
y	$=a(x-(-1))^{2}-4$
y	$=a(x+1)^{2}-4$
-3	$=a(-2+1)^{2}-4$
-3	$=a(1)^{2}-4$
-3	$=1 a-4$
$+4 \quad+4$	
$1=1 a$	
$\frac{1}{1}=\frac{1 a}{1}$	
$1=a$	
$a=1$	
$y=1(x+1)^{2}-4$	

Write Vertex Form
Substitute Vertex for (p, q)

Vertex: $(3,-2)$ and x-intercept $=4$

$$
\begin{aligned}
& y=a(x-p)^{2}+q \\
& y=a(x-(3))^{2}-2 \\
& y=a(x-3)^{2}-2 \\
& 0=a(4-3)^{2}-2 \\
& 0=a(1)^{2}-2 \\
& 0=1 a-2 \\
& +2 \quad+2 \\
& 2=a \\
& a=2
\end{aligned}
$$

Draw on Graph
Check on Graphing Calculator Table of Values

(p, q)
$(3,-2)$

C11-3.5-Vertex: $\left(-\frac{b}{2 a}, y\right)$ Quadratics in Standard Form Notes
$y=x^{2}-6 x+5$

$$
\begin{array}{lc}
\text { Vertex }=\left(\frac{-b}{2 a}, y\right) & \text { Vertex }=\left(\frac{-b}{2 a}, y\right) \\
\text { Vertex }=\left(\frac{-(-6)}{2(1)}, y\right) & \\
\text { Vertex }=\left(\frac{6}{2}, y\right) & \left(\frac{-b}{2 a}, c-\frac{b^{2}}{4 a}\right) \\
\text { Vertex }=(3, y)
\end{array}
$$

$y=x^{2}-6 x+5$
$y=(3)^{2}-6(3)+5$
$y=9-18+5$
$y=-4$
Substitute 3 in for x and solve for y

Vertex $=(3,-4) \quad y=x^{2}-6 x+5$
Vertex $=(3,-4)$

x	y
1	0
2	-3
Vertex $:$	3
4	-4
5	-3
5	0

$$
\begin{array}{llll}
y=x^{2}-6 x+5 & y=x^{2}-6 x+5 & y=x^{2}-6 x+5 & y=x^{2}-6 x+5 \\
y=(1)^{2}-6(1)+5 & y=(2)^{2}-6(2)+5 & y=(4)^{2}-6(4)+5 & y=(5)^{2}-6(5)+5 \\
y=1-6+5 & y=4-12+5 & y=16-24+5 & y=25-30+5 \\
y=0 & y=-3 & y=-3 & y=0
\end{array}
$$

AOS: Average Two Horizontal Points ($x-$ int' $^{\prime}$)

$$
\begin{aligned}
& x=\frac{1+5}{2} \\
& x=3
\end{aligned}
$$

C11-3.6-Product of Numbers is a Min Notes

The difference between two numbers is $\mathbf{1 0}$. Their product is a minimum.

Let $a=1$ st \#

Let $b=2 n d$ \#
(1) $a-b=10$
(2) $a \times b=$ minimum $a \times b=m$ $y=a \times b$

$$
\begin{aligned}
a-b & =10 \\
+b & +b \\
a & =(10+b)
\end{aligned}
$$

$$
\begin{aligned}
& y=a \times b \\
& y=(10+b) \times b \\
& y=10 b+b^{2} \\
& y=b^{2}+10 b
\end{aligned}
$$

$$
y=b^{2}+10 b
$$

$$
y=\left(b^{2}+10 b+25-25\right)
$$

$$
y=\left(b^{2}+10 b+25\right)-25
$$

$$
y=(b+5)^{2}-25
$$

(x, y)

$$
(b, \min)
$$

Let statements: get used to using variables other than x and y

Equation 1, equation 2.
The minimum or maximum will be y.

Equation \#1

Isolate a variable

Equation \#2
Substitute the
isolated variable
Complete the square.
$\left(\frac{b}{2}\right)^{2}=\left(\frac{10}{2}\right)^{2}=(5)^{2}=25$

C11-3.6-Product of Numbers is a Min Notes

Two numbers differ by $\mathbf{1 0}$. The product of the larger number and twice the smaller number is a minimum. What are the numbers?

```
Let a=1st#
Let b=2nd #
\[
\text { Let } b=2 n d \#
\]
```

(1) $a-b=10$

$$
\text { (2) } \begin{aligned}
a \times 2 b & =\text { minimum } \\
a \times 2 b & =\text { minimum } \\
y & =a \times 2 b
\end{aligned}
$$

$$
\begin{aligned}
a-b & =10 \\
a & =10+b
\end{aligned}
$$

$$
\begin{aligned}
& y=a \times 2 b \\
& y=(10+b) \times 2 b \\
& y=20 b+2 b^{2} \\
& y=2 b^{2}+20 b
\end{aligned}
$$

Let statements:

$$
y=2\left(b^{2}+10 b+25-25\right)
$$

$$
y=2\left(b^{2}+10 b+25\right)-50
$$

$$
y=2(b+5)^{2}-50
$$

$$
\begin{aligned}
a & =10+b \\
a & =10-5 \\
a & =5 \\
a & =5 \\
b & =-5
\end{aligned}
$$

Substitute b into the other equation.

[^0]
C11-3.6-Sum of Squares is a Min Notes

Two numbers sum to 8 . The sum of their squares is a minimum.

Let $a=1$ st \#
Let $b=2 n d$ \#
(1) $a+b=8$
(2) $a^{2}+b^{2}=$ minimum $a^{2}+b^{2}=\operatorname{minimum} y$ $y=a^{2}+b^{2}$

$$
\begin{aligned}
a+b & =8 \\
-b & -b \\
a & =8-b \\
a & =(8-b)
\end{aligned}
$$

$$
\begin{aligned}
& y=a^{2}+b^{2} \\
& y=(8-b)^{2}+b^{2} \\
& y=64-16 b+b^{2}+b^{2} \\
& y=2 b^{2}-16 b+64
\end{aligned}
$$

$$
\begin{aligned}
& y=2 b^{2}-16 b+64 \\
& y=2\left(b^{2}-8 b\right)+64 \\
& y=2\left(b^{2}-8 b+16-16\right)+64 \\
& y=2\left(b^{2}-8 b+16\right)+64-32 \\
& y=2(b-4)^{2}+32
\end{aligned}
$$

$$
\text { Vertex }=(4,32)
$$

$$
\begin{aligned}
& a=8-b \\
& a=8-(4) \\
& a=4
\end{aligned}
$$

$$
\begin{aligned}
& a=4 \\
& b=4
\end{aligned}
$$

The minimum product is 32 .

Let statements:

Equation 1, equation 2.
The minimum or maximum will be y.

Equation \#1

Isolate a variable

Equation \#2
Substitute the isolated variable

Complete the square.
$\left(\frac{b}{2}\right)^{2}=\left(\frac{8}{2}\right)^{2}=(4)^{2}=16$

Substitute b into the other equation.

List the two numbers and the maximum.

C11-3.6-Product of Numbers is a Max Notes

The sum of two times one number and six times another is sixty. Find the numbers if their product is a maximum.

Let $a=1$ st \#
Let $b=2 n d$ \#
(1) $2 a+6 b=60$

$$
\text { (2) } \begin{aligned}
a \times b & =\text { maximum } \\
a \times b & =\text { maximum } y \\
y & =a \times b
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 a}{2}+\frac{6 b}{2}=\frac{60}{2} \\
& a+3 b=30 \\
& a=30-3 b
\end{aligned}
$$

$$
\begin{aligned}
& y=a \times b \\
& y=(30-3 b) \times b \\
& y=30 b-3 b^{2} \\
& y=-3 b^{2}+30 b
\end{aligned}
$$

$$
\begin{aligned}
& y=-3 b^{2}+30 b \\
& y=-3\left(b^{2}-10 b+25-25\right) \\
& y=-3\left(b^{2}-10 b+25\right)+75 \\
& y=-3(b-5)^{2}+75
\end{aligned}
$$

$$
\text { Vertex }=(5,75)
$$

$$
\begin{aligned}
& a=30-3 b \\
& a=30-3(5) \\
& a=15 \\
& a=15 \\
& b=5
\end{aligned}
$$

Let statements:

Equation 1, equation 2.
The minimum or maximum will be y.

Equation \#1

Isolate a variable

Equation \#2
Substitute the
isolated variable

Complete the square.
$\left(\frac{b}{2}\right)^{2}=\left(\frac{10}{2}\right)^{2}=(5)^{2}=25$

Substitute b into the other equation.

List the two numbers and the maximum.

C11-3.7-Fence w/ River Notes ($p=8 m$)

A rectangular enclosure is bounded on the side of a river. 3 sides total 8 m of fencing. Find the dimensions of the largest possible enclosure.

Let $w=$ width
Let $l=$ length

(1) | River |
| :--- |
| $2 w+l=P$ |
| $2 w+l=8$ |

2w
$2 w+l=8$
$-2 w$
$l=8-2 w$

$$
\begin{aligned}
& A=l \times w \\
& A=(8-2 w) \times w \\
& A=8 w-2 w^{2} \\
& A=-2 w^{2}+8 w
\end{aligned}
$$

Equation 1, equation 2.
The minimum or maximum will be y.

Equation \#1
Isolate a variable

Equation \#2
Substitute the
isolated variable

$$
\begin{aligned}
& A=-2 w^{2}+8 w \\
& A=-2\left(w^{2}-8 w\right) \\
& A=-2\left(w^{2}-4 w+4-4\right) \\
& A=-2\left(w^{2}-4 w+4\right)+8 \\
& A=-2(w-2)^{2}+8
\end{aligned}
$$

Complete the square.
$\left(\frac{b}{2}\right)^{2}=\left(\frac{-4}{2}\right)^{2}=(-2)^{2}=4$
$l=8-2 w$
$l=8-2(2)$
$l=4$

Substitute w into the other equation.

List the length and width and the maximum area.

Or, factor, solve, average solutions, substitute.

C11-3.7-Fence w/ River Notes ($p=60 \mathrm{~m}$)

Jack has 60 m of fencing to build a three sided fence on the side of his house. Determine the maximum possible area of the fenced area, and the dimensions of the fence.

$$
\begin{aligned}
& \text { Let } w=\text { width } \\
& \text { Let } l=\text { length }
\end{aligned}
$$

Let statements:

Equation 1, equation 2.

The minimum or maximum will be y.

Equation \#1
Isolate a variable

Equation \#2
Substitute the isolated variable

Complete the square.
$\left(\frac{b}{2}\right)^{2}=\left(\frac{10}{2}\right)^{2}=(5)^{2}=25$

$$
\begin{aligned}
& y=-2\left(w^{2}+30 w\right) \\
& y=-2\left(w^{2}-30 w+225-225\right) \\
& y=-2\left(w^{2}-30 w+225\right)+450 \\
& y=-2(w-15)^{2}+450
\end{aligned}
$$

$$
\begin{aligned}
& y=l \times w \\
& y=(60-2 w) w \\
& y=60 w-2 w^{2} \\
& y=-2 w^{2}+60 w
\end{aligned}
$$

$$
\begin{aligned}
& l=60-2 w \\
& l=60-2(15) \\
& l=60-30 \\
& l=30
\end{aligned}
$$

width $=15 \mathrm{~m}$
length $=30 \mathrm{~m}$

The maximum area is $450 \mathrm{~m}^{8}$

Substitute w into the other equation.

List the length and width and the maximum area.

C11-3.7 - Fence w/ wall Split in Two

A rectangular fence that is split in half is against a wall. The total fencing length is 42 m . What is the max area of the fence?

```
Let w = width
Let l= length
```

$F=l+3 w$

$$
\begin{aligned}
A & =l \times w \\
\max & =l \times w \\
y & =l \times w
\end{aligned}
$$

$$
\begin{aligned}
& P=l+3 w \\
& 42=l+3 w \\
&-3 w-3 w \\
& 42-3 w=l \\
& l=42-3 w
\end{aligned}
$$

$$
\begin{aligned}
& A=l \times w \\
& y=(42-3 w) \times w \\
& y=42 w-3 w^{2} \\
& y=-3 w^{2}+42 w \\
& y=-3\left(w^{2}-14 w\right) \\
& y=-3\left(w^{2}-14 w+49-49\right) \\
& y=-3\left(w^{2}-14 w+49\right)+147 \\
& y=-3(w-7)^{2}+147
\end{aligned}
$$

Vertex: $(7,147)$

$l=42-3 w$
$l=42-3(7)$
$l=21$
length $=21 \mathrm{~m}$
width $=7 \mathrm{~m}$

Max area $=147 \mathrm{~m}^{2}$

Let statements:

Equation 1, equation 2. The minimum or maximum will be y.

Equation \#1

Isolate a variable

Equation \#2
Substitute the isolated variable

Complete the square.
$\left(\frac{b}{2}\right)^{2}=\left(\frac{-14}{2}\right)^{2}=(7)^{2}=49$

The maximum is the y value.

List the length and width and the maximum area.

C11-3.8 - Bridge Find Equation Notes

A bridge has pillars 30 m tall and are 100 m apart. The maximum at the center of the bridge is 80 m tall. Find the equation of the parabolic bridge. What is the height 5 m away from each pillar.

$$
\begin{aligned}
y & =a(x-p)^{2}+q \\
y & =a(x-50)^{2}+80 \\
30 & =a(0-50)^{2}+80 \\
30 & =a(50)^{2}+80 \\
-80 & -80 \\
-\frac{50}{2500} & =\frac{2500 a}{-2500} \\
a & =-\frac{1}{50}
\end{aligned}
$$

$y=-\frac{1}{50}(x-50)^{2}+80$

C11-3.9-Set Up Maximize Candy Sales Notes

A student sells candy to all of his friends. Each candy costs 6 dollars, and he has 10 friends who buy the candy each day. Every time he increases the cost by 1 dollar, 1 of his friends decides not to buy the candy. Set up how this question will look.

Let $p=$ price
Let $q=$ quantity
Let $r=$ revenue
Let $x=\#$ of price increases

$$
\begin{aligned}
& \text { Revenue }=\text { price } \times \text { quantity } \\
& \text { If } p=6, \quad q=10 \quad r=6 \times 10 \\
& \quad r=60
\end{aligned}
$$

$$
p=6+1 x \longrightarrow \begin{aligned}
& \text { Raising the price by } 1 \\
& \text { dollar } x \text { times. }
\end{aligned} \quad q=10-1 x \longrightarrow \longrightarrow \begin{aligned}
& \text { Each } x \text { times he raises the price, } 1 \\
& \text { less friend will buy the candy. }
\end{aligned}
$$

$$
\begin{aligned}
& r=p \times q \\
& r=(6+1 x) \times(10-1 x)
\end{aligned}
$$

Price	
x	p
-2	4
-1	5
0	6
1	7
2	8

Quantity		
	x	q
	-2	12
	-1	11
	0	10
	1	9
	2	8

C11-3.9-Maximize Candy Sales Notes

A student sells candy to all of his friends. Each candy costs 6 dollars, and he has 10 friends who buy the candy each day. Every time he increases the cost by 1 dollar, 1 of his friends decides not to buy the candy. What is the price that will maximize revenue?

Let $p=$ price
Let $q=$ quantity
Let $r=$ revenue
Let $x=\#$ of price increases

$$
\begin{array}{ll}
\text { Revenue }=\text { price } \times \text { quantity } & r=p \times q \\
\text { If } p=6, \quad q=10 & r=6 \times 10 \\
r=60 & r=\$ 60
\end{array}
$$

$p=6+1 x \rightarrow \begin{aligned} & \text { If he decides to raise the } \\ & \text { price by } 1 \text { dollar } x \text { times. }\end{aligned} \quad q=10-1 x \longrightarrow \begin{aligned} & \text { One less friend will buy the candy } \\ & \text { each time he increases the price. }\end{aligned}$
$=p \times q \vee$
$r=(6+x)(10-x)$
$r=60-6 x+10 x-x^{2}$
$r=60+4 x-x^{2}$
$r=-x^{2}+4 x+60$
$r=-\left(x^{2}-4 x\right)+60 \xrightarrow{\times(-1)}$
Complete the square.
$r=-\left(x^{2}-4 x+4-4\right)+60$
$r=-\left(x^{2}-4 x+4\right)+60+4$
$\left(\frac{b}{2}\right)^{2}=\left(-\frac{4}{2}\right)^{2}=(-2)^{2}=4$
$r=-(x-2)^{2}+64$

$$
\begin{aligned}
& q=10-1 x \\
& q=10-1(2) \\
& q=10-2 \\
& q=8
\end{aligned}
$$

$$
\text { quantity }=8
$$

C11-3.9-Maximize Car Sales Notes

A car salesman sells a car for $\$ 4000$, with 20 people buying the car. For every $\$ 200$ he takes off the price, 2 more people buy a car. What is the price that will maximize revenue?

Let $p=$ price
Let $q=$ quantity
Revenue $=$ price \times quantity
If $p=\$ 4000, q=20 \quad$ If they sell 20 cars at $r=\$ 80,000 \quad \$ 4000$, revenue is $\$ 80,000$.
Let $r=$ revenue
Let $x=\#$ of price decreases

$x=5$ price decreases
$p=4000-200 x$
$p=4000-200(5)$
$p=4000-1000$
$p=3000$

$$
\text { price }=\$ 3000
$$

$$
\begin{aligned}
q & =20+2 x \\
q & =20+2(5) \\
q & =20+10 \\
q & =30
\end{aligned}
$$

quantity $=30$ people

C11-3.9- Maximize Car Sales Notes (No Price Increases)

A car salesman sells a car for $\$ 2000$, with 20 people buying the car. For every $\$ 200$ he takes off the price, 2 more people buy a car. What is the price that will maximize revenue?

Let $p=$ price
Let $q=$ quantity
Revenue $=$ price \times quantity

Let $r=$ revenue

$$
\begin{array}{cl}
\text { If } p=\$ 2000, \quad q=20 & \text { If they sell } 20 \text { cars at } \$ 8000 \\
r=\$ 40,000 & \\
\text { revenue is } \$ 40,000 .
\end{array}
$$

Let $x=\#$ of price decreases

$x=0$ price decreases
$p=2000-200 x$
$p=2000-200(0)$
$p=2000$

$$
\text { price }=\$ 2000
$$

$$
\begin{aligned}
& q=20+2 x \\
& q=20+2(0) \\
& q=20-0 \\
& q=20
\end{aligned}
$$

quantity $=20$ people

The height vs distance of a bow and arrow shot off a cliff is represented by following equation:

$$
h=-2 d^{2}+8 d+10
$$

What is the maximum height and the distance it took to get there? Draw on a graph.

Complete the Square

$$
h=-2 d^{2}+8 d+10
$$

$$
h=\left(-2 d^{2}+8 d\right)+10
$$

$$
h=-2\left(d^{2}-4 d\right)+10
$$

$$
h=-2\left(d^{2}-4 d+4-4\right)+10
$$

$$
h=-2\left(d^{2}-4 d+4\right)+8+10
$$

$$
h=-2(d-2)^{2}+18
$$

$$
V:(2,18)
$$

$$
(d, h)
$$

$$
d=2 \quad h=18
$$

$$
h=-2 d^{2}+8 d+10
$$

What was the height of the cliff?

$$
D:[0,5] \text { or } 0 \leq x \leq 5 \quad R:[0,18] \text { or } 0 \leq y \leq 18
$$

How far did the arrow go before it hit the ground?

$$
\begin{aligned}
& h-\text { int } \quad h=-2 d^{2}+8 d+10 \quad h=0 \quad h=-2\left(d^{2}-4 d-5\right) \\
& d=0 \\
& h=-2(0)^{2}+8(0)+10 \\
& h=10 \\
& \text { Find Domain and Range } \\
& 0=-2(d-5)(d+4) \quad \text { Factor }
\end{aligned}
$$

At what distance is the height $16 \mathrm{~m}(\mathrm{CH} 8)$? At what distance is the height greater than 16 m (CH9)?

[^0]: The minimum product is -50 .

