

Graph : $\quad y=x^{2}$

Table of Values

x	y
-2	4
-1	1
0	0
1	1
2	4

Over 1, 1 squared = 1, up 1. Back to the vertex. Over 2, 2 squared = 4, up 4.
 $y=(x-2)^{2}$

Right²

Choose values in the Table until this happens!

Notice: $y=(x-p)^{2}$ is the graph $y=x^{2}$ shifted Right 2. Opposite*.

C11-3.0- Quadratics "a" Flip/Change Shape Patterns

$y=a x^{2}$

Opens Down

Notice: Pattern from Vertex $(0,0)$ is Symmetrical on Both Sides.
Over 1,1 squared $=1,1$ TIMES $2=2$, up 2 . Back to the vertex. Over 2 , 2 squared $=4,4$ TIMES $2=8$, up 8 . In the last two steps, we are multiplying by 2 because $a=2$.

C11-3.0-Completing the Square $a=1 a \neq 1$ Notes

C11-3.0- Quad Find Eq. V\&Pt/2Hor*Pts\&3rd Pt/WP

$\boldsymbol{V}:(-1,-4)(p, q)$	$y=a(x-p)^{2}+q$
Pt: $(-2,-3)(x, y)$	$y=a(x-(-1))^{2}$
	$y=a(x+1)^{2}-4$
	$-3=a(-2+1)^{2}-4$
	$-3=a(-1)^{2}-4$
	$-3=1 a-4$
	$+4 \quad+4$
	$a=1$
	$y=1(x+1)^{2}-4$

Vertex Form
Substitute Vertex (p, q)
Substitute Pt. (2, - 3)
BEDMAS
Solve for a.
Sub 'a' into Vertex Form

A parabolic bridge has pillars 30 m tall and are 100 m apart. The maximum at the center of the bridge is 80 m tall. Find the equation of the parabolic bridge. What is the height 5 m away from each pillar.

C11-3.0-Quadratics \#'s WPs

$$
\begin{aligned}
& a \times b=\text { minimum } \\
& a \times b=\text { minimum }
\end{aligned} \quad\left(\frac{b}{2}\right)^{2}=
$$

$$
y=a \times b
$$

$$
\begin{align*}
& y=a \times b \tag{25}\\
& y=(10+b) \times b
\end{align*}
$$

$$
\begin{equation*}
y=10 b+b^{2} \tag{5}
\end{equation*}
$$

Let statements/Diagram 2 Equations Isolate/Substitute Distribute* (Algebra) Complete the Square/Vertex Substitute/Solve Answer/Check/Test

$$
\begin{array}{rlrl}
a-b & =10 & \min & =a \times b \\
5-(-5) & =10 & & =5 \times-5 \\
& =-25
\end{array}
$$

$$
a=10+b
$$

$$
0 \times 10=0 \quad-1 \times 9=-9 \quad-4 \times 6=-24 \quad-5 \times 5=-25 \quad-10 \times-20=-200
$$

Find Two numbers who differ by 10 if The product of the larger \# and twice the smaller \# is a minimum.
Let $a=1$ st \#
Let $b=2 n d$ \#

$$
\begin{aligned}
& a-b=10 \quad a \times 2 b=\text { minimum } \\
& a=(10+b) \quad a \times 2 b=\underline{\text { minimut }} y \\
& y=a \times 2 b \\
& \pm y=(10+b) \times 2 b \\
& \begin{array}{cc}
a=10+(-5) & \begin{array}{l}
y=20 b+2 b^{2} \\
y \\
a=5 \\
y=2 b^{2}+20 b \\
y=5 \\
b=-5
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

Find Two numbers who sum to 8 and the sum of their squares is a minimum.
Let $a=1$ st \#
Let $b=2 n d$ \#
$a+b=8 \quad a^{2}+b^{2}=$ minimum
$-b \quad-b a^{2}+b^{2}=$ minimum y $a=8-b \quad y=a^{2}+b^{2}$ $a=(8-b), y=a^{2}+b^{2}$
$y=(8-b)^{2}+b^{2}$
$y=64-16 b+b^{2}+b^{2}$
$a=8-(4) \quad y=2 b^{2}-16 b+64$
$a=4 \quad y=2\left(b^{2}-8 b\right)+64$
$a=4$
$b=4$$\quad \begin{aligned} & y=2\left(b^{2}-8 b+16-16\right)+64 \\ & y=2\left(b^{2}-8 b+16\right)+64-32 \\ & y-2(b-4)^{2}+3 z\end{aligned}$
Vertex : $(4,32)$
The minimum product is 32 .
Find two numbers whose sum of twice one \# and six times another \# is sixty if their product is a maximum.

Let $a=1$ st \# $\quad 2 a+6 b=60$
Let $b=2 n d$ \#
$\frac{2 a}{2}+\frac{6 b}{2}=\frac{60}{2}$
$a+3 b=30$
$a=15$
$b=5$

$$
a=30-3 b
$$

$a=30-3(5)$
$a=15$
The maximum product is 75
$a \times b=$ maximum
$a \times b=$ maximum y

$$
y=a \times b
$$

$$
y=(30-3 b) \times b
$$

$$
y=30 b-3 b^{2}
$$

$$
y=-3 b^{2}+30 b
$$

$$
y=-3 b^{2}+30 b
$$

$$
y=-3\left(b^{2}-10 b+25-25\right)
$$

$y=-3\left(b^{2}-10 b+25\right)+75$
$y=-3(b-5)^{2}+75$
Vertex :
$(5,75)$

$2 \times 15+6 \times 5=60$ $5 \times 15=75$

C11-3.0-Quadratics Rectangles WPs

Find the largest 3-sided rectangular enclosure (area) bounded on the side of a river with total 8 m of fencing.

Find the maximum area of rectangular fence is split in half is against a wall with a total fencing length is $\mathbf{4 2} \mathbf{~ m}$.

A rectangular fence enclosure with total fencing of 60 meters is cut in half. Find the maximum area.

\section*{C11-3/4/8/9.0- Quadratics Projectiles/Calc WP's | $\substack{\text { hvs.t (1D/2D) } \\ \text { hvs.d (2D) }}$ |
| :---: |}

The height vs distance of a bow and arrow shot off a cliff is represented by following equation:
$h=-2 d^{2}+8 d+10$
What is the maximum height and the distance it took to get there?

Chapter 4

Chapter 4
At what distance is the height $16 \mathrm{~m} ? ~ h=16$

$$
h=-2 d^{2}+8 d+10
$$

$$
h=-2 d^{2}+8 d+10
$$

$$
16=-2 d^{2}+8 d+10
$$

$$
-16 \quad-16
$$

$$
0=-2 d^{2}+8 d-6
$$

$$
\frac{0}{-2}=\frac{-2 d^{2}+8 d-6}{-2}
$$

$$
0=d^{2}-4 d+3
$$

$$
0=(d-3)(d-1)
$$

$$
d=3 d=d=1
$$

Chapter 9
At what distance is the height greater than 16 m ?
$h \geq 16 \quad h=-2 d^{2}+8 d+10$
$-2 d^{2}+8 d+10 \geq 16$

$$
-16 \quad-16
$$

$-2 d^{2}+8 d-6 \geq 0$
$\frac{-2 d^{2}+8 d-6}{-2} \geq \frac{0}{-2}$
$d^{2}-4 d+3 \leq 0$
$(d-3)(d-1) \leq 0$

A Rock thrown straight up with a velocity of $10 \frac{\mathrm{~m}}{\mathrm{~s}}$ from a stand of height of 1 m . Find Max Height and Time to max height and time in Flight. Find height of stand.

C11-3/4/8/9.0- Quadratics Max Revenue WPs

A student sells candy to their friends each day.
Candy sells for 6 dollars, and 10 friends buy the candy.
If they increase the price by 1 dollar, 1 less friend decides not to buy the candy. What is the price and quantity that will maximize revenue?
Let $p=$ price, Let $q=$ quantity, Let $R=$ revenue Let $x=\#$ of price increases $x=2$ price increases

No Price
Change
$p=6, q=10$
$R=p \times q$
$R=6 \times 10$
$R=\$ 60$

Revenue $=$ price \times quantity
$R=p \times q$
$R=(6+1 x)(10-1 x)$
$R=60-6 x+10 x-x^{2}$
$R=-x^{2}+4 x+60 \quad$ Complete
Vertex: $\quad R=-\left(x^{2}-4 x\right)+60$ Square

Chapter 9
What is the Domain of $R \geq 55$ Prices that Revenue $\geq \$ 55$?

$$
\begin{gathered}
-x^{2}+4 x+60 \geq 55 \\
\frac{-x^{2}}{-1}+\frac{4 x}{-1}+\frac{5}{-1} \geq \frac{0}{-1} \\
x^{2}-4 x-5 \leq 0 \\
(x-5)(x+1) \leq 0 \\
x=5) x=-1
\end{gathered}
$$

$-1 \leq x \leq 5 \quad 5 \leq p \leq 11$
If we lower the price by 1 dollar or don't change the price or raise the price between zero and five times, revenue will be greater than $\$ 55$.

	11	-1	55
	10	0	
	9	1	63
	8	2	64
9	7	3	63
10	6	4	60
11	5	2	55

\cdots			
16	4	6	0

Chapter 8
If the cost of each candy is $\$ 2 /$ candy, what is the break even points ($R=C$), and domain of the number of price increases to be profitable ($R-C=0$) ? Shade the region.

