C11-4.6-Rectangular Garden

A rectangular garden has an Area of 36 and a Perimeter of 30 . What are the lengths and widths?

```
Let w = width
Let l = length
```

Let statements:

$$
\begin{aligned}
& P=2 l+2 w \\
& P=2 l+2 w \\
& 30=2 l+2 w \\
& \frac{30}{2}=\frac{2 l}{2}+\frac{2 w}{2} \\
& 15=l+w \\
&-w \quad-w \\
& 15-w=l \\
& l=15-w
\end{aligned}
$$

$$
A=l \times w
$$

Equation \#1
Isolate a variable

Equation \#2
Substitute the isolated variable

$$
w-12=0
$$

$$
w=12
$$

$$
\begin{gathered}
w-3=0 \\
w=3
\end{gathered}
$$

$$
\begin{aligned}
& l=15-w \\
& l=15-(12) \\
& l=3
\end{aligned}
$$

$$
\begin{gathered}
\text { Length }=12 \\
\text { Width }=3
\end{gathered}
$$

OR

$$
l=15-w
$$

$$
l=15-(3)
$$

$$
l=12
$$

C11-4.6 - Fence Split in Two

A rectangular fence that is split in half is against a wall. The total fencing length is 39 , and it has a total area of 66 . What are the dimensions of the fence?

$l=39-3 w$
$l=39-3(11)$
$l=39-33$
$l=6$

Width $=11$
Length $=6$

C11-4.6 - Rectangular Garden Quad

A rectangular garden has an area of 61 and a perimeter of 40 . What are the lengths and widths?

Let $w=$ width Let $l=$ length

$$
A=l \times w
$$

$P=2 l+2 w$
$40=2 l+2 w$
$\frac{40}{2}=\frac{2 l}{2}+\frac{2 w}{2}$

$$
20=l+w
$$

$$
-w \quad-w
$$

$20-w=l$
$l=20-w$

$$
\begin{gathered}
A=l \times w \\
91=l \times w \\
61=(20-w) \times w \\
61=20 w-w^{2} \\
+w^{2}+w^{2} \\
61+w^{2}=20 w \\
-20 w-20 w \\
w^{2}-20 w+61=0 \\
w=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
w=\frac{-(-20) \pm \sqrt{20^{2}-4(1)(61)}}{2(1)}
\end{gathered}
$$

$$
w=\frac{20-\sqrt{156}}{2(1)} \quad w=\frac{20+\sqrt{156}}{2(1)}
$$

$$
w=3.755
$$

$$
w=16.245
$$

$$
\begin{aligned}
l & =20-w \\
l & =20-(16.245) \\
l & =3.755
\end{aligned}
$$

$$
\text { Length }=16.245
$$

$$
\text { Width }=3.755
$$

OR
$l=15-w$
$l=15-(3.755)$

$$
l=16.245
$$

$$
\begin{aligned}
\text { Length } & =3.755 \\
\text { Width } & =16.245
\end{aligned}
$$

Let statements:

Equation 1, equation 2.

Equation \#1 Isolate a variable

Equation \#2 Substitute the isolated variable

Quadratic Formula

Solve

Substitute w into the other equation.

List the length and width

List the length and width

C11-4.6 - Fence Split in Two Quad

A rectangular fence that is split in half is against a wall. The total fencing length is 61 , and it has a total area of 58. What are the dimensions of the fence?

Let $w=$ width
Let $l=$ length

$$
P=l+3 w
$$

$$
\begin{aligned}
& P=l+3 w \\
& 61=l+3 w \\
&-3 w-3 w \\
& 61-3 w=l \\
& l=61-3 w
\end{aligned}
$$

$$
A=l \times w
$$

$$
\begin{aligned}
& A=l \times w \\
& 58=(61-3 w) \times w \\
& 58=61 w-3 w^{2} \\
&+3 w^{2}+3 w^{2} \\
& 58+3 w^{2}=61 w \\
&-61 w-61 w \\
& 3 w^{2}-61 w+58=0
\end{aligned}
$$

$$
w=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
w=\frac{-(-61) \pm \sqrt{61^{2}-4(3)(58)}}{2(3)}
$$

$$
w=\frac{61+\sqrt{3025}}{6} \quad w=\frac{61-\sqrt{3025}}{6}
$$

$$
w=19 . \overline{3} \quad w=1
$$

$$
w=\frac{58}{3}
$$

$$
l=61-3 w
$$

$$
l=61-3\left(\frac{58}{3}\right)
$$

$$
l=61-58
$$

$$
l=3
$$

Width $=\frac{58}{3}$
Length $=3$
or
$l=61-3 w$
$l=61-3(1)$
$l=61-3$
$l=58$
Width $=58$
Length $=1$

Let statements:

Equation 1, equation 2.

Equation \#1
Isolate a variable

Equation \#2
Substitute the isolated variable

Quadratic Formula

Solve

Substitute winto the other equation.

