C11 - 4.6 - Rectangular Garden

A rectangular garden has an Area of 36 and a Perimeter of 30. What are the lengths and widths?

C11 - 4.6 - Fence Split in Two

A rectangular fence that is split in half is against a wall. The total fencing length is 39, and it has a total area of 66. What are the dimensions of the fence?

C11 - 4.6 - Rectangular Garden Quad

A rectangular garden has an area of 61 and a perimeter of 40. What are the lengths and widths?

C11 - 4.6 - Fence Split in Two Quad

A rectangular fence that is split in half is against a wall. The total fencing length is 61, and it has a total area of 58. What are the dimensions of the fence?

	Wall			
Let $w = width$ Let $l = length$				Let statements:
	W		W	
P = l + 3w	$A = l \times w$			Equation 1, equation 2.
P = l + 3w 61 = l + 3w				Equation #1 Isolate a variable
-3w - 3w 61 - 3w = l l = 61 - 3w	$A = l \times w$ $58 = (61 - 3w) \times w$			Equation #2
	$58 = 61w - 3w^{2} +3w^{2} + 3w^{2} 58 + 3w^{2} = 61w$			Substitute the isolated variable
	$-61w - 61w 3w^2 - 61w + 58 = 0$			
	$w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $w = \frac{-(-61) \pm \sqrt{61^2 - 4(3)(58)}}{2(3)}$			Quadratic Formula
	$w = \frac{61 + \sqrt{3025}}{19.\overline{3}}$	$w = \frac{61 - 1}{1}$ $w = 1$	$\frac{\sqrt{3025}}{6}$	
	$w = \frac{58}{3}$			Solve
$l = 61 - 3w$ $l = 61 - 3\left(\frac{58}{3}\right)$ $l = 61 - 58$ $l = 3$				Substitute w into the other equation.
$Width = \frac{58}{3}$ Length = 3				List the length and width
or				
l = 61 - 3w l = 61 - 3(1) l = 61 - 3 l = 58				
$\left(\begin{array}{c} Width = 58\\ Length = 1 \end{array}\right)$				List the length and width