C11 - 7.1 - Absolute Value: |x| Notes

Do whatever is inside the absolute value, then make it positive.

Solve algebraically.

x = 4	"+" case:	"—" case:	x = -6
	+(x) = 4 x = 4	-(x) = 4 $(x = -4)$	(Impossible.)
Distrib into th	ute a positive e absolute value	Distribute a negative into the absolute value	
	x = 4 4 = 44 = 4	x = 4 $ -4 = 4$ $4 = 4$	Check your answer. (Left Hand Side LHS = RHS Right Hand Side)
x - 2 = 2	"+" case:	"-" case:	
	+(x-2) = 2 x-2 = 2 x = 4	-(x-2) = 2 -x + 2 = 2 -x = 0 x = 0	
	x-2 = 2 4-2 = 2 2 = 2	x-2 = 2 0-2 = 2 -2 = 2	
2 x-2 =6	"+" case:	"—" case:	
	+2(x-2) = 6 $2x - 4 = 6$ $2x = 10$ $x = 5$	-2(x-2) = 6-2x + 4 = 6-2x = 2x = -1	
	2 x-2 = 62 5-2 = 62 3 = 6	2 x-2 = 6 2 -1-2 = 6 2 -3 = 6	/
$ x^2 - 1 = x$	- 1 "+" case:	"—" case:	
	$+(x^{2}-1) = x - x^{2} - x = 0$ $x(x-1) = 0$ $x = 0$ $x - 1 = 0$	$-1 - (x^{2} - 1) = x - 1$ $-x^{2} + 1 = x - 1$ $x^{2} + x - 2 = 0$ (x + 2)(x - 1) = 0	2 - 0
	Ý		x = 2
x ² - 1 ² -	$ \begin{array}{c} 1 &= x - 1 \\ 1 &= 1 - 1 \\ 0 &= -0 \end{array} \bigvee $	$ \begin{array}{c} x^{2} - 1 = x - 1 \\ 0^{2} - 1 = 0 - 1 \\ -1 = -1 \end{array} \begin{array}{c} x^{2} \\ (-2)^{2} \\ 4 \end{array} $	$ \begin{array}{c} -1 = x - 1 \\ 2 - 1 = -2 - 1 \\ -1 = -2 - 1 \\ 3 = -3 \end{array} $

C11 - 7.1 - Absolute Value Inequalities: |x| Notes

 $|x| \ge 2$ "+" case: "-" case: Divide by a negative, change direction of sign. $(x) \geq$ $x \leq -$ 2 $\geq_{,}\leq=\bullet$ -3 0 -5 -2 -4 -1 1 5 2 3 4 Shade greater than two, and less than negative two. Check your answer. Test values in shaded region. $|-3| \ge \\ |-3| \ge \\ 3 \ge 2$ |3| ≥ |3| ≥ 3 3 ≥ 2 |x-3| < 2"+" case: "-" case: +(x-3) < 2-(x-3) < 2x - 3 < 2-x + 3 < 2*x* < 5 -x < 2Divide by a negative, change direction of sign. x > \leftarrow $>_{i} < = 0$ -5 -3 -2 0 -4 -1 1 2 3 4 5 Shade less than five, and greater than negative two. Check your answer. Test values in shaded region.

C11 - 7.2 - y = |x + c| Piecewise Linear Absolute Value Notes

Graphing Absolute Values

$$y = |x + 2|$$
"+" case: "-" case: Distribute a positive into the absolute value
$$y_1 = +(x + 2)$$

$$y_2 = -(x + 2)$$

$$y_2 = -x - 2$$
Distribute a negative into the absolute value
If already negative combine

y = |x + 2|

Notice the graph of y = |x + 2| is the graph of y = x + 2 and y = -x - 2 without any negative y values. Transfer any negative y value to a positive y value.

Piecewise function:
$$y = \begin{cases} x + 2, if \ x \ge -2 \\ -x - 2, if \ x < -2 \end{cases}$$
 $y = \begin{cases} "+" case, Domain of "+" case, Domain of "-" cas$

Notice: The domain of the negative case is not equal to.

Domain of positive case:

Domain of negative case:

$x + 2 \ge 0$	Set what is inside the	x + 2 < 0	Set what is inside
-2 -2	absolute value greater	-2 -2	the absolute value
$x \ge -2$	than or equal to zero.	<i>x</i> < -2	less than zero.

C11 - 7.3 - |x| = c Equations Absolute Value Notes

Solve algebraically

x + 2 = 4	
"+" case:	"-" case:
+(x + 2) = 4 x + 2 = 4 x = 2	-(x + 2) = 4 $-x - 2 = 4$ $-x = 6$ $x = -6$

Check your answer.

$$|x + 2| = 4 |2 + 2| = 4 |4| = 4$$

$$|-6 + 2| = 4 |-4| = 4 |-4| = 4$$

Solve graphically.

$$|x + 2| = 4$$
 Left hand side (LHS) = Right hand side (RHS)

y = |x + 2|

y=Left hand side (LHS)

y = 4

AnR Page 4

C11 - 7.4 - Quadratic Absolute Value Notes

$$y = |x^2 - 4|$$

"+" case:

 $y = |x^2 - 4|$

 $y_2 = -(x^2 - 4)$ $y_2 = -x^2 + 4$

$$y_1 = +(x^2 - 4)$$

$$y_1 = x^2 - 4$$

Notice the graph of $y = |x^2 - 4|$ is the graph of $y_1 = x^2 - 4$ less than two and greater than two and is the graph of $y_2 = -x^2 + 4$ less than two and greater than negative two.

C11 - 7.5 - Quadratic Absolute Value Equations Notes

Solve algebraically.

$$|x^2 - 4| = x + 2$$

"+" case: "-" case:

$$\begin{array}{c} +(x^{2}-4) = x + 2 \\ x^{2}-4 = x + 2 \\ x^{2}-x - 6 = 0 \\ (x - 3)(x + 2) = 0 \\ \hline x = 3, -2 \end{array}$$

$$\begin{array}{c} -(x^{2}-4) = x + 2 \\ -x^{2}+4 = x + 2 \\ 0 = x^{2} + x - 2 \\ 0 = (x + 2)(x - 1) \\ \hline x = -2, 1 \end{array}$$

Check Answers!

$$x = 3, -2 \qquad \qquad x = -2, 1$$

Solve Graphically

C11 - 7.6 - Reciprocal Restrictions Notes

Find the restrictions

 $\frac{1}{x-2}$

Set denominator
$$= 0$$
, and solve.

$$x - 2 = 0$$

$$\frac{1}{(x+2)(2x-1)}$$

Set denominator = 0, and solve.

 $2x^2 + 3x - 2 = (x + 2)(2x - 1)$

C11 - 7.7 - Linear Reciprocals Notes

Line

Solve algebraically: set denominator = 0, 1, -1.

Reciprocal line

Pick a y value, What's one divided by that y value. Put a point on the graph. X value is same as it was.

Invariant points (IP): Invariant points (IP): Vertical asymptote (VA): Denominator = 1Denominator = -1Denominator = 0x + 4 = 1x + 4 = -1x + 4 = 0x = -3x = -5x = -4(-3, 1)(-5, -1)VA: x = -4D: $x \neq -4$ 1. Graph original 2. Graph VA: Dotted line D: $x \neq -4$ 3. Graph IP's $y = \frac{1}{x+4}$ 4. Graph reciprocal y = x + 41 х ΓУ х y x + 4-100-.01 -5 -5 -1 -1 -4.1 -10 -4.01-100 0 -4 UND -4 -3.99100 -2 10 -3.9 -3 -3 1 -3 1 -4 -5 100 .01

Close to the vertical asymptote, through the point, close the x-axis/vertical asymptote

 $v \neq 0$

Notice: The invariant points are the intersection of the original and the lines y = 1, y = -1

Notice: The vertical asymptote(s) of the reciprocal is the X intercept of the original

C11 - 7.8 - Quadratic Reciprocals Notes

Parabola

Reciprocal Parabola

Solve algebraically: set denominator = 0, 1, -1.

