Logic C12 - 0.0 - Remer	$\frac{1}{1}$ mber $y = \frac{2}{f^{-1}(x)} + 4$	1) f^{-1} 2) $\frac{1}{y}$ 3) VE 4) V7	$y = \frac{1}{f^{-1}(x)}$	$\frac{2}{(x-2)+}$	$ \begin{array}{r} 1) f^{-1} \\ 2) HT = +2 \\ \hline 4 3) VT = +4 \\ 4) \frac{1}{v} \end{array} $
Transformations $(2x)^2$ Horizontal Translations are the Horizontal Expansions and Co Do the opposite/reciprocal of Vertical Translations are the Q "k" may be on the left hand si Do exactly what you see outsi "a" may be on the left side of <u>DMAS</u> . Inverse 1st. Function Q Factor the brackets so x has a Put whatever is inside the br How wide/tall is it/now? Wha Invariant Points/Inverse Check	$= 4x^2$ e Opposite of what you see in mpressions are the Reciproc what you see inside the bra Opposite of what you see on de of the equation: $y -$ de of the brackets on the rig the equation: c Operations 1st. Inside Out. On coefficient of 1 (Can't factor rackets in for x. Substitute v t happened? Any reflections k/The function doesn't change	inside the al of what ckets to the left h k = f(x) ht-hand y = f(x) rder Mat out of/d vith Brace ? Pick a p ge.	e brackets to the <u>x-v</u> at you see inside the the <u>x-value.</u>). So add or subtra side to the <u>y-value.</u>). So multiply or dir ters. listribute into a fund ckets. point, not an interce	<u>value</u> . (atta e brackets <u>alue</u> . Attac ct "k" to b vide by "a" ction). ept, do exp	5 $VE = 2ached to the variable)to the x-value.thed to the variable.oth sides.to both sides./comp/ref, Moved?$
Radicals $\sqrt{4x} = 2\sqrt{x}$ $\sqrt{x^2} = x $ $\sqrt{x} = x^{\frac{1}{2}}$ Remember: Choose increments of x in your table of values the Invariant Points: $(x, 0), (x, 1)$			at square root ea	sily.	Inverse $f(f^{-1}(x)) = x$ $f^{-1}(f(x)) = x$
Polynomials Calc: St	ore <i>x</i>		Exponentials		
Long - Goes Into, Multiply, Subtract, Bring Down, Repeat Synthetic - Bring Down, Multiply, Add, Repeat f(a) = 0, $(x - a)$ is a Factor (Or not $f(a) = R$) Missing Terms "Insert 0" $\frac{dividend}{divisor} = quotient + \frac{remainder}{divisor}$			$2(3)^x \neq 6^x$ Growth/Decay The exponent is the time or the number of time periods! Logarithms		
Trigonometry			The thing you are Logging equals the Base to		
Calculator must be in radia Rationalize $\theta = \sin^{-1}(+)$ Trig Functions	n mode Graph Zoom 7 (Trig) +Sin starts in the		the other side. The base of the log is the base of the exponent. The exponent is the Answer. $log(x + 3) \neq logx + log3$ $(logx)^m \neq mlogx$ Logs and Exponentials are inverses of each		
$sin\theta = 0, \theta = 0, \pi, 2\pi$	middle and goes up		other		
$cos\theta = 0, \theta = \frac{\pi}{2}, \frac{3\pi}{2}$ +Cos starts from the top and goes down x -Increments = #, $\frac{\pi}{lcd c,p}$ end = $c + p$ $p = \frac{2^*\pi}{b}$			Rational's Holes before VA's A graph can cross a horizontal asymptote		
solutions between $0 \le \theta \le 2\pi$			Function operations $f(x^3) \neq (f(x))^3 = f^3(x) = [f(x)]^3$; $f(x)^3$ Never		
Trig Identities					
$\sin^{2} x = \sin x \times \sin x = \frac{(\sin(x))^{2}}{\sin x^{2}} \neq \sin x^{2}$ $\cos(x + \pi) \neq \cos x + \cos \pi$			Combinatorics Logic/Repeats/Replacement		