C12 - 11.10 - Pascal's Triangle

 $;(a+b)^n$

Pascal's triangle with numbers and with ${}_{n}\mathcal{C}_{r}$'s.

Row 1				1				n = 0	Sum: $2^0 = 1$	The sum of the row is equal to 2^n
Row 2			1		1			n = 1	$2^1 = 2$	$sum = 2^n$
Row 3		1		2		1		n = 2	$2^2 = 4$	
Row 4		1	3		3	1		n = 3	$2^3 = 8$	$sum = 2^{row\#-1}$
Row 5	1	4		6		4	1	n = 4	$2^4 = 16$	
	\uparrow									
						$_4C_3$				
	r = 0	r = 1								

2nd # in row is n # = nC1

$${}_{0}C_{0}$$
 ${}_{1}C_{0}$
 ${}_{1}C_{1}$
 ${}_{2}C_{0}$
 ${}_{2}C_{1}$
 ${}_{2}C_{2}$
 ${}_{3}C_{0}$
 ${}_{3}C_{1}$
 ${}_{3}C_{2}$
 ${}_{3}C_{3}$
 ${}_{4}C_{0}$
 ${}_{4}C_{1}$
 ${}_{4}C_{2}$
 ${}_{4}C_{3}$
 ${}_{4}C_{3}$