## C12-11.11-Binomial Expansion Notes

## Binomial Expansion:

$(x+2)^{2}=(x+2)(x+2)=x^{2}+4 x+4$
$(x+2)^{3}=(x+2)(x+2)(x+2)=(x+2)\left(x^{2}+4 x+4\right)=x^{3}+4 x^{2}+4 x+2 x^{2}+8 x+8=x^{3}+6 x^{2}+12 x+8$
$(x+2)^{2}=1 x^{2}+4 x+4$
$(x+2)^{3}=1 x^{3}+6 x^{2}+12 x+8$
$k$ is always one less than the term number.

$t_{k+1}={ }_{n} C_{k} a^{n-k} b^{k}$

$$
\begin{aligned}
t_{5} & =t_{k+1} \\
5 & =k+1 \\
4 & =k
\end{aligned}
$$

| Binomial | "n" | Row \# | Expansion | Numbe <br> rof <br> Terms |  |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $(a+b)^{0}$ | 0 | 1 |  | 1 | 1 |
| $(a+b)^{1}$ | 1 | 2 | $1 a+1 b$ | 2 |  |
| $(a+b)^{2}$ | 2 | 3 | $1 a^{2}+2 a b+1 b^{2}$ | 3 |  |
| $(a+c)^{3}$ | 3 | 4 | $1 a^{3}+3 a^{2} b+3 a b^{2}+1 b^{3}$ | 4 |  |
| $(a+b)^{4}$ | 4 | 5 | $1 a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 x b^{3}+1 b^{4}$ | 5 |  |
| $(a+b)^{5}$ | 5 | 6 | $1 a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+1 b^{5}$ | 6 |  |
| $(a+b)^{6}$ | 6 | 7 | $1 a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+1 b^{6}$ | 7 |  |

Pascal's Triangle can aid in the expansion of binomials. Notice that the coefficients on each term match the numbers in Pascal's Triangle.

General Formula:
Notice that the sum of the exponents of each term is equal to $n$

$$
\begin{gathered}
t_{1}, k=0 \quad t_{2}, k=1 \\
(a+b)^{n}={ }_{n} C_{0}(a)^{n}(b)^{0}+{ }_{n} C_{1}(a)^{n-1}(b)^{1}+{ }_{n} C_{2}(a)^{n-2}(b)^{2}+\cdots+{ }_{n} C_{n-1}(a)^{1}(b)^{n-1}+{ }_{n} C_{n}(a)^{0}(b)^{n}
\end{gathered}
$$

What is the 5th term of expansion $(a+b)^{6}$.

$$
t_{k+1}={ }_{n} C_{k} a^{n-k} b^{k}
$$

$$
\begin{aligned}
& n=6 \\
& a=a
\end{aligned}
$$

$$
t_{5}={ }_{6} C_{4} a^{6-4} b^{4}
$$

$$
t_{5}=15 a^{2} b^{4}
$$

$$
\begin{aligned}
t_{k+1} & =t_{5} \\
k+1 & =5 \\
k & =4
\end{aligned}
$$

## C12-11.11 - Binomial Theorem Middle, $x^{\wedge} 11, x^{\wedge} 0$ Notes

$$
\text { FOIL }\left(x^{2}+2\right)^{3}=\left(x^{2}+2\right)\left(x^{2}+2\right)\left(x^{2}+2\right)=\left(x^{4}+4 x^{2}+4\right)\left(x^{2}+2\right)=x^{6}+6 x^{4}+12 x^{2}+8
$$

Which term in the binomial expansion $\left(x^{2}+2\right)^{3}$ has $x^{4}$ ? Find the term

$$
\begin{aligned}
& t_{k+1}={ }_{n} C_{k} a^{n-k} b^{k} \\
& t_{k+1}={ }_{3} C_{k}\left(x^{2}\right)^{3-k}(2)^{k} \\
& =\left(x^{2}\right)^{3-k} \\
& x^{6-2 k}=x^{4} \quad\left(x^{2}\right)^{3-k}=x^{4} \quad\left(x^{2}\right)^{3-k} \text {; is the only part that contributes } \\
& 6-2 k=4 \\
& 2=2 k \\
& k=1 \quad t_{k+1}= \\
& t_{1+1}=t_{2} \quad \text { The second term, } t_{2} \text {, will have an exponent } x^{4} \\
& t_{k+1}={ }_{n} C_{k} a^{n-k} b^{k} \\
& t_{2}={ }_{3} C_{1}\left(x^{2}\right)^{3-1}(2)^{1} \\
& t_{2}=3\left(x^{2}\right)^{2} \times 2 \\
& t_{2}=6 x^{4} \quad \text { The second term, } t_{2}=6 x^{4}
\end{aligned}
$$

## Which term in the binomial expansion $\left(x^{2}+2\right)^{3}$ is a constant? $\left(5=5 x^{0}\right)$ Find the term.

$$
\begin{aligned}
& t_{k+1}={ }_{n} C_{k} a^{n-k} b^{k} \\
& t_{k+1}={ }_{3} C_{k}\left(x^{2}\right)^{3-k}(2)^{k} \\
& =\left(x^{2}\right)^{3-k} \\
& x^{6-2 k}=x^{0} \quad\left(x^{2}\right)^{3-k}=x^{0} \quad{ }_{n} C_{k} \text { and the negative in front of } x \text { do not } \\
& 6-2 k=0 \\
& 6=2 k \\
& \begin{array}{ll}
k=3 & t_{k+1}= \\
& t_{3+1}=t_{4}
\end{array} \\
& t_{k+1}={ }_{n} C_{k} a^{n-k} b^{k} \\
& t_{4}={ }_{3} C_{3}\left(x^{2}\right)^{3-3}(2)^{3} \\
& t_{4}=1\left(x^{2}\right)^{0} \times 8 \quad \text { The fourth term, } t_{4}=8 \\
& t_{4}=8 x^{0} \\
& t_{4}=8 \\
& { }_{n} C_{k} \text { and the negative in front of } x \text { do not } \\
& \text { contribute to finding which term it is. }
\end{aligned}
$$

Which term in the binomial expansion $\left(x^{2}-\frac{1}{x}\right)^{10}$ has $x^{11}$ ? Find the term. Note:

$$
\begin{array}{ll}
t_{k+1}= & { }_{n} C_{k} a^{n-k} b^{k} \\
t_{k+1}= & { }_{10} C_{k}\left(x^{2}\right)^{10-k}\left(-x^{-1}\right)^{k} \\
& \left(x^{2}\right)^{10-k}\left(x^{-1}\right)^{k} \\
& x^{20-2 k} x^{-k} \\
& x^{20-3 k}=x^{11} \\
20-3 k=11 & \\
9=3 k & \\
& \\
& \\
& \\
& \\
& \\
t_{k+1}= & \\
t_{k+1}= & \\
t_{k} C_{k} a^{n-k} b^{k}\left(x^{2}\right)^{10-k}\left(-x^{-1}\right)^{k} & \\
t_{4}={ }_{10} C_{3}\left(x^{2}\right)^{10-3}\left(-x^{-1}\right)^{3} & \\
t_{4}={ }_{10} C_{3}\left(x^{2}\right)^{7}\left(-x^{-1}\right)^{3} & \\
t_{4}={ }_{10} C_{3} x^{14}\left(-x^{-3}\right) & \text { The fourth term will have } x^{11} . \\
t_{4}={ }_{10} C_{3}\left(-x^{11}\right) & \\
t_{4}= & \\
-120 x^{11} & \text { The fourth term, } t_{4}=-120 x^{11} \\
&
\end{array}
$$

