Paths in squares formula: $\quad \frac{(l+w)!}{l!w!}$

How many different paths can you follow from A to B if you only move down or to the right?

$$
\frac{(2+2)!}{2!2!}=\frac{4!}{2!2!}=\frac{(4 \times 3 \times 2!)}{2!2!}=\frac{4 \times 3}{2 \times 1}=\frac{12}{2}=6
$$

$$
\begin{gathered}
\mathrm{R}, \mathrm{R}, \mathrm{D}, \mathrm{D} \\
\frac{4!}{2!2!} \\
\hline
\end{gathered}
$$

A

B

A

$$
\frac{(2+2)!}{2!2!} \times \frac{(2+2)!}{2!2!}=6 \times 6=36
$$

How many ways can you get from one comer of a 3 sided rubix cube to the opposite comer if you never backtrack.
Paths in rectangular prisms formula: $\quad \frac{(l+w+h)!}{l!w!h!} \quad=\frac{(3+3+3)!}{3!3!3!}=\frac{9!}{216}=1680$

