C12 - 1.0 - VHT VHCE VHR Function/Point Transformations Review

C12 - 1.0 - Vł	HT VHCE V	HR Functior	יSub Reי	view	$y = x^2$
VT = +3 Vertical Translation up 3	$y = x^{2}$ $y - 3 = x^{2}$ $y = x^{2} + 3$	Put ' $y - 3'$ in for 'y y -> y - 3	$f(x) = \begin{cases} f(x) \\ f(x) \\ f(x) \end{cases}$	$x^{2} = x^{2}$ $3 = x^{2}$ $y^{2} = x^{2} + 3$	<u>Substitute the</u> <u>Opposite Operation</u> for the Variable
HT = +3 Horizontal Translation right 3	$y = x^2$ $y = (x - 3)^2$	$\sum_{x \to x-3}^{\text{Put } x - 3' \text{ in for } x}$	$\begin{array}{c} f(x) = \\ f(x-3) \end{array}$	$= x^2$ $= (x - 3)^2$	<u>Substitute the</u> <u>Opposite Operation</u> <u>for the Variable</u>
HT = -3 Horizontal Translation left 3	$y = x^2$ $y = (x+3)^2$	$\sum_{x \to x+3}^{\text{Put } 'x + 3' \text{ in for } 'x}$	x'		<u>Substitute the</u> Opposite Operation for the Variable
VE = 2 Vertical Expansion of 2	$y = x^{2}$ $\frac{1}{2}y = x^{2}$ $y = 2x^{2}$	Put $\frac{1}{2}y$ in for 'y' $y \rightarrow \frac{1}{2}y$			<u>Substitute the</u> <u>Opposite Operation</u> <u>for the Variable</u>
HE = 2 Horizontal Expansion of 2	$y = x^{2}$ $y = \left(\frac{1}{2}x\right)^{2}$ $y = \frac{1}{4}x^{2}$	Put $\frac{1}{2}x$ in for 'x' $x \rightarrow \frac{1}{2}x$	$f(x) = x$ $f\left(\frac{1}{2}x\right) = 0$	$\frac{c^2}{\left(\frac{1}{2}x\right)^2}$	<u>Substitute the</u> <u>Opposite Operation</u> for the Variable
$VC = \frac{1}{2}$ Vertical Compression of $\frac{1}{2}$	$y = x^{2}$ $2y = x^{2}$ $y = \frac{1}{2}x^{2}$	Put $2y$ in for $'y'$ $y \rightarrow 2y$			<u>Substitute the</u> Opposite Operation for the Variable
<i>HR</i> Horizontal Reflection	$y = x^{2}$ $y = (-x)^{2}$ $y = x^{2}$	Put $-x$ in for x $x \rightarrow -x$			<u>Substitute the</u> <u>Opposite Operation</u> <u>for the Variable</u>
<i>VR</i> Vertical Reflection	$y = x^{2} \qquad P^{2}$ $-y = x^{2}$ $y = -x^{2}$	$ut - y \text{ in } for y$ $y \to -y$			<u>Substitute the</u> <u>Opposite Operatior</u> <u>for the Variable</u>
$\frac{x^2 + y^2 = 4}{x^2 + (y - 3)^2 = 4}$	Vertical Trans	slation up 3	$y \rightarrow y - 3$	$x^2 + y^2 = \frac{y^2}{y^2}$	$= 4 OR$ $= \pm \sqrt{4 - x^2}$
$\frac{x^2 + y^2 = 4}{(x - 3)^2 + y^2 = 4}$	Horizontal Tra	inslation right 3	$x \rightarrow x - 3$	(y =	$=\pm\sqrt{4-x^2+3}$