C12-1.1-HT Translations Theory

$$
y=x^{2}
$$

Let's take the function $f(x)=x^{2}$

$$
y=f(x)=x^{2}
$$

(2,4)
Let's take the point $(2,4)$

$(0,4)$

Remember: The function doesn't change

If $y=4$, What does x have to be?
What plus two all squared equals four?
$x=0$

The x-value was 2
Now the x-value is 0
The x-value minus 2

$$
\begin{aligned}
y & =(x+2)^{2} \\
4 & =(x+2)^{2} \\
\sqrt{4} & =\sqrt{(x+2)^{2}} \\
2 & =x+2
\end{aligned}
$$

路

$$
x-2 \text { Left } 2
$$

They are all equal to each other
$y=x^{2}$
$y=f(x)$
$f(x)=x^{2}$

General Form

$$
y=f(x-h)
$$

$y=f(x+2)$
Left 2

[^0]$y=x^{2}$
Let's take the function $f(x)=x^{2}$
$$
y=f(x)=x^{2}
$$

Let's take the point $(2,4)$

$$
m(x)=x^{2}-2
$$

Let's call it $\mathrm{m}(x)$
If $x=2$, What does y equal?
2 squared minus 2 equals 2 ?

The y -value was 4 Now the y -value is 2
The y-value minus 2

$$
\begin{aligned}
y & =x^{2}-2 \\
y & =(2)^{2}-2 \\
y & =2
\end{aligned}
$$

$y-2$ Down 2

Vertical Translations are the Opposite of what you see on the left hand side to the y-value. Attached to the variable. " k " may be on the left hand side of the equation: $\quad y-k=f(x)$. So add or subtract " k " to both sides.
Do exactly what you see outside of the brackets on the right-hand side to the y-value

C12-1.2 -HCE Transformations Theory

$$
y=f(b x)
$$

$$
y=f(2 x)
$$

C12-1.2-VCE Transformations Theory

$y=x^{2}$
(1)1)

$(1,2)$

Let's take the function $f(x)=x^{2}$

$$
y=f(x)=x^{2}
$$

Let's take the point $(1,1)$

Now, let's take the function
$y \rightarrow \frac{1}{2} y \quad$ Put $\frac{1}{2} y$ in for y
If $x=1$, What does y equal?
1 squared times 2 equals 2?
$y=2$
The y -value was 1

$$
\begin{aligned}
y & =x^{2} \\
\frac{1}{2} y & =x^{2} \\
y & =2 x^{2} \quad p(x)=2 x^{2}
\end{aligned}
$$

Let's call it $\mathrm{p}(x)$

Now the y -value is 2
The y-value times 2

Vertical Expansions and Compressions are the Reciprocal of what you see on the left hand side to the y-value. "a" may be on the left side of the equation: $\quad a y=f(x)$. So multiply or divide by "a" to both sides.
Do exactly what you see outside of the brackets on the right-hand side to the y-value

[^0]: Horizontal Translations are the $\underline{\text { Opposite }}$ of what you see inside the brackets to the $\underline{\mathbf{x}}$-value. Attached to the variable.

