C12-7.1-Exponents Laws HW

Simplify
$4^{2} \times 4^{3}=$
$3^{2} \times 3^{3}=$
$\frac{5^{3}}{5^{2}}=$
$\frac{7^{3}}{7^{5}}=$
$\frac{3^{2}}{81}=$
$\left(3^{2}\right)^{4}=$
$(3 x)^{2}=$
$(x+2)^{2}=$

$$
\left(\frac{1}{3}\right)^{2}=
$$

$$
\left(\frac{2}{5}\right)^{2}=
$$

$$
5^{0}=
$$

$$
6^{0}=
$$

Change Base

$25=$
$9=$
$8=$
$27=$

Change to base 2

$$
16=
$$

$$
4^{2}=
$$

$$
16^{2}=
$$

$$
16=
$$

$$
16^{2}=
$$

$$
64
$$

256=

Write as a single of power

$$
3^{2} \times 4^{2}=\quad 2^{2} \times 5^{2}=
$$

$$
(2 \times 3)^{x}=
$$

$$
(6)^{x}=
$$

Write with a positive exponents

$$
5^{-3}=\quad \frac{3}{x^{-5}}=
$$

Write with a negative exponents

$$
\frac{1}{5^{2}}=\quad \frac{1}{5}=
$$

$$
2^{3}=
$$

$$
\frac{x}{3^{2}}=
$$

Change Base with negative exponent
$\frac{1}{25}=$
$\frac{1}{9}=$
$\frac{1}{16}=$
$\frac{1}{16}=$

C12-7.1-Simplifying/Separating Exponents HW

Simplify to a single exponent
$2^{x} \times 2=$
$3^{x} \times 3=$
$\left(6^{2}\right)^{x}=$
$\left(9^{x}\right)^{2}=$
$\frac{2^{x}}{2}=$
$\frac{7^{x}}{7}=$
$\frac{5}{5^{x}}=$
$\frac{4}{4^{x}}=$
$5^{2 x} \times 5=$
$3^{2 x} \times 3^{x}=$
$3^{x} \times 9=\quad 2^{x} \times 16=$
$\frac{4^{x}}{8}=$
$\frac{4^{x}}{256}=$

$$
\frac{49}{7^{x}}=\quad \frac{81}{3^{x}}=
$$

C12-7.1-Simplifying/Separating Exponents HW

Separate into a multiplication/division/or use brackets with the same base. (Isolate $\#^{x}$)
$3^{x+1}=$
$5^{x-1}=$
$2^{1-x}=$
$6^{2 x+1}=$
$7^{2 x}=\quad 2^{2 x+1}=$
$5^{x-1}=$
$6^{2 x}=$
$3^{1-x}=$
$2^{2 x+3}=$
$5^{x-3}=$
$7^{x+1}=$
$3^{2-2 x}=\quad 6^{3 x}=$
$7^{3 x+2}=$
$1^{2 x}=$

Separate into a multiplication/division/or use brackets with the different bases. (Isolate $\#^{x}$)

$$
6^{x}=
$$

$10^{x}=$
$14^{x}=$
$15^{x}=$
$8^{x}=$

$$
8^{x}=
$$

$12^{x}=$
$12^{x}=$

C12-7.1-Simplifying/Separating Exponents HW

Simplify

$$
\frac{2^{3} \times 2^{5}}{2^{2}}=
$$

$$
\frac{4^{8} \times 2^{5}}{32}=
$$

$$
\frac{8^{3} \times 2^{10}}{256 \times 4^{2}}=
$$

$$
\frac{2^{8} \times 2^{-3}}{16}=
$$

$$
\frac{8^{-1} \times 32^{4}}{64^{-2}}=
$$

$$
\frac{2^{-1} \times 16^{-4}}{128^{-2}}=
$$

$$
\frac{2^{2 x+1} \times 2^{2}}{2^{x}}=
$$

$$
\frac{4^{x} \times 8}{2}=
$$

$$
\frac{3^{3 x+2}}{3^{x+1}}=
$$

$$
\frac{5^{4 x-1}}{125^{x}}=
$$

$$
\frac{4^{x} \times 8^{3 x+1}}{16^{2 x+3}}=
$$

C12-7.2-Separate/Factoring/Solving Exponents Notes

Solve for x

$$
3^{x}=27^{2}
$$

$$
2^{x}=16^{2}
$$

$$
5^{x} 5^{2}=5^{5}
$$

$$
3^{x} 3=3^{5}
$$

$4^{x+1}=2 \times 8^{2 x-5}$
$64^{x+1}=4^{2 x}$

C12-7.2-Separate/Factoring/Solving Exponents Notes

Solve for x
$5^{x^{2}-5}=625$
$5^{x^{2}-x}=1$

$$
3^{x^{2}+x}=9
$$

$$
\begin{aligned}
& x=+-3 \\
& 3^{x^{2}-1}=27
\end{aligned}
$$

$x=0,1$
$x=1,-2$
$5^{x^{2}-3 x}=\frac{1}{25}$
$x=+-2$
$x=0,3 \quad x=2,1$

C12-7.2 - Separate/Factoring/Solving Exponents Notes

Solve for x
$5\left(2^{x}\right)+2^{x}=48$

$$
3^{x}+4\left(3^{x}\right)-45=0
$$

$-3\left(5^{x}\right)=2\left(5^{x}\right)-5$
$x=3$
$3^{x}+3^{x+1}=108$
$2^{x}-2^{x+3}+15=0$
$9^{x+2}-243=81^{x}-9$

C12-7.2 - Separate/Factoring/Solving Exponents Notes

Solve for x
$\left(2^{x}\right)^{2}-6\left(2^{x}\right)+8=0$
$\left(3^{x}\right)^{2}-2\left(3^{x}\right)-3=0$
$x=1,2$
$3^{2 x}-4\left(3^{x}\right)=-3$
$x=1$
$4^{2 x}=3\left(4^{x}\right)-2$

C12-7.2 - Separate/Factoring/Solving Exponents Notes

Solve for x

$$
5^{x}-5^{x-1}-4=0
$$

$$
10-3^{x}=3^{2-x}
$$

$x=1$
$7^{x}-28\left(7^{-x}\right)=3$
$3\left(3^{x}\right)^{2}-7\left(3^{x}\right)+2=0$

C12-7.2 - Separate/Factoring/Solving Exponents Notes

Solve for x

$$
4^{x+1}-5\left(2^{x+2}\right)+16=0
$$

$$
6^{x}-4\left(3^{x}\right)-3\left(2^{x}\right)+12=0
$$

$x=1,2$
$\left(2^{x}\right)^{2}-4=0$
$\left(3^{x}\right)^{2}-6\left(3^{x}\right)+9=0$

C12-7.3 - Word Problems HW

If you deposit $\$ 1000$ in the bank for five years at 10\% interest how much will you have after 5 years?

If you deposit \$2000 in the bank for five years at 8\% interest how much will you have after 10 years?

If you deposit \$5000 in the bank for five years at $\frac{1}{2} \%$ interest how much will you have after 50 years?

If you deposit \$100 in the bank, how long will it take to grow to $\$ 51200$ if it doubles each year?

How many times as
intense is an earthquake of 7.0 than 4.0 ?

An earth quake in California of Richter 8.5 Magnitude was 100 times as strong as an earth quake in Vancouver of what Richter Magnitude.

C12-7.3 - Word Problems HW

If you deposit $\$ 3000$ in the bank for eight years at 12% interest, compounded monthly, how much will you have after 8 years?

If a population starts at 100 and doubles every five hours, how large will the population grow in 20 hour?

If you deposit $\$ 8000$ in the bank for five years at 4% interest, compounded quarterly, how much will you have after 2 years?

How long to triple your money at 8%

If the population starts at 500 and grows continuously at a rate of 0.04 , how large will it grow after 30 days?

C12-7.4-Exponent 2^{x} Reflections Graphs HW

Draw the following graphs using a table of values.

$$
y=2^{x}
$$

x	y
-1	
0	
1	
2	

$y=2^{-x}$

x	y
-2	
-1	
0	
1	

$$
y=-2^{x}
$$

x	y
-1	
0	
2	
2	
2	

$$
y=-2^{-x}
$$

x	y
-2	
-1	
0	
1	

C12-7.4-Exponent 3^{x} Reflections Graphs HW

Draw the following graphs using a table of values.

$$
y=3^{x}
$$

x	y
-1	
0	
1	
2	

$y=3^{-x}$

x	y
-2	
-1	
0	
1	

$y=-3^{x}$

x	y	
-1		
0		
	1	
2		

$y=-3^{-x}$

x	y
-2	
-1	
0	
1	

C12-7.4-2 2^{x} Translations Reflections Graphs HW

Draw the following graphs using a table of values.

$$
y=2^{x}+1
$$

x	y
-1	
0	
1	
2	

$$
y=2^{-x}-2
$$

x	y
-2	
-1	
0	
1	

$$
y=-2^{x+1}
$$

x	y
-1	
0	
1	
2	

$$
y=2^{-x+2}-2
$$

x	y
-2	
-1	
0	
1	

C12-7.4- 2^{x} Tramsformations Graphs HW

Draw the following graphs using a table of values.

$$
y=2(2)^{x}
$$

x	y
-1	
0	
1	
2	

$y=2^{2 x}$

x	y
-2	
-1	
0	
1	

$$
y=2^{2 x+4}
$$

x	y
-1	
0	
1	
2	

$$
y=2^{-\frac{1}{2} x+2}-1
$$

x	y
-2	
-1	
0	
1	

