C12 - 7.0 - Exponentials Review

<u>Interest</u>

KEY

 $F = P(1 \pm r)^t$

F: Future Amount
P: Present Amount

r: Interest rate as decimal

t: time (in years*)

;+= Growth -= Decay

$$F = P\left(1 \pm \frac{r}{n}\right)^{tn}$$

; with Compounding

n: # of compounding periods per year

 $\frac{r}{n}$: Rate per period

tn: number of periods

Yearly; n = 1Monthly; n = 12

Weekly; n = 52

Method: Arbitrarily set P = 100% or 100 or 1

Remember: The exponent is the time or the number of time periods.

Growth	2% = .02	15% = .15	40% = .4	50% = .5	60% = .6	100% = 1.00	Double
(1+r)	(1+.02)	(1 + .15)	(1 + .4)	(1 + .5)	(1 + .6)	(1 + 1.00)	
()	(1.02)	(1.15)	(1.4)	(1.5)	(1.6)	(2)	(2)

Decay	10% = .1	15% = .15	40% = .4	50% = .5	60% = .6	95% = .95	Half — Life
(1-r)	(11)	(115)	(14)	(15)	(16)	(195)	(1 - 0.5)
()	(.9)	(.85)	(.6)	(.5)	(.4)	(.05)	$(\frac{1}{2})$

Growth & Decay

$$F = P(r)^{\frac{t}{T}}$$

; Growth with "T"

T: Time/Amount for Rate to OCCUR

 $F = 100(.87)^{t}$ $n = \frac{1}{T}$ $F = 100\left(\frac{1}{2}\right)^{\frac{t}{5}}$

$$F = Pe^{kt}$$

; Continuous Growth

 $e: constant \approx 2.71..$ k: proportional constant $\left(1 + \frac{r}{\infty}\right)^{\frac{\infty}{r}} \approx e = 2.71..$

<u>Intensity</u>

KEY

$$I=10^{b-s}$$

 $I = 10^{-10}$

; Earthquakes, pH^*

; Sound

 $I = \frac{I_b}{I_s}: Intensity$

 $I = \frac{1}{I_s}$. Intensity b - Larger Richter, Debibel, pH etc.

s - Smaller Richter, Decibel, pH etc

 $pH = -\log(H^+)$ H^+ - Concentration of Hydrogen

Exponent Laws

$$x^m \times x^n = x^{m+n}$$

$$\frac{x^m}{x^n} = x^{m-n}$$

$$(x^m)^n = x^{m \times n}$$

$$x^{-a} = \frac{1}{x^a}$$

 $\frac{1}{x^{-a}} = x^a$

Change of Base

$$8 = 2^3$$
$$81 = 9^2 = 3^4$$

$$y_1 = y_2$$
 Find Intersection (Or use Logs)

Same Base/Exponent: Make Exponents/Bases equal to each other. Take both/sides to reciprocal exponent of variable/things.

$$\left(\frac{x}{x}\right)^{-m} = \frac{y^m}{x^m}$$

$$x^{\frac{m}{n}} = \sqrt[n]{x^m}$$

$$let m = 2^x$$