C12-8.0-Laws of Logarithms Review
'b'is the base
' a ' is "the thing you are logging"
let $m=\log x$

1. $\log _{b} a<c$ Log Change

Forms
Exponential
What power must you raise "b" to, to equal "a"? Slide "b" across.

$$
\begin{array}{ll}
a>0 & \text { Restrictions } \\
b>0, b \neq 1
\end{array}
$$

2. $\log a^{m}=m \log a$
3. $\log _{b} a=\frac{\log a}{\log b}$
4. $\log m+\log n=\log m n$
5. $\log m-\log n=\log \frac{m}{n}$
6. $\log _{b} a=\log _{b^{n}} a^{n}$
7. $b^{\log _{b} a}=a$

Same base of exponent as logarithm, answer is "a"
8. $\log _{a} a=1$
9. $\log _{a} 1=0$
10. $\log x=\log _{10} x$

Methods: "log" both sides
"de-log" both sides
"inverse": switch x and y
Set Log arbitrarily $=x$
Turn a number into a Log

Natural Logarithms: (same rules as logs)

$\ln e=1$

$$
\ln x=\log _{e} x \quad \ln x=\ln _{e} x
$$

Methods: " n " both sides.
"de-In" both sides.
$f(x)=2^{x} \quad y=2^{x}$

Domain: $x \in R$

Range: $y>k(a>0)$
$\begin{aligned} y & <k(a<0) \\ H A: y & =k\end{aligned} \quad y=a(C)^{b(x-h)}+k$

$f^{-1}(x)=\log _{2} x \quad y=\log _{2} x$

Graphing: Graph b^{x}
Switch x and y Transformations

x	y
$\frac{1}{2}$	-1
1	0
2	1

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Domain: } b(x-h)>0 & \text { \& base }>0, \text { base } \neq 1 \\
\text { Range: } y \in R & \\
& V A: b(x-h)=0
\end{array} & y=\operatorname{alog}(b(x-h))+k
\end{array}
$$

