P11-3.1-F = ma Newton's Laws Notes

Force - A Push or pull
Four Fundamental Forces

1.Gravitational P11

2.Electromagnetic (e^{-})
3.Strong Nuclear (keeps p^{+}in nucleus)
4.Weak Nuclear (Radioactive Decay)

Force of Gravity - Attracts Matter to Matter
Matter - Anything that has Mass and takes up space.
Mass - Amount of Matter an object holds
Weight - The force of Gravitational Attraction
Mass is constant throughout the universe.
Weight depends on your location. (Earth, Moon, Space ...) g, depends on the \underline{m} of the planet and \underline{d} from it's centre

Units: Newton's (N)
1 Newton: The force required to accelerate a 1 kg object at $1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

$$
\begin{array}{ll}
1 N=\frac{1 k g m}{s^{2}} & F=m a \\
& N=k g \frac{m}{s^{2}}
\end{array}
$$

Newton's 3 Laws:

Including at rest

1 Inertia - An object will continue at a constant velocity, unless acted upon by a non-zero sum force.

3 Every force has an equal and opposite force. (You push me, I push back)

		F_{g} : Force of Gravity, (Gravitational Force) m: Mass g: Gravity $\quad g=-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ $\frac{N}{k g}=\frac{m}{s^{2}}$				
The Gravitational Force:	$F_{g}=m g$					

What is the Pull Force required to accelerated a 15 kg object at $2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$?

What is the Pull Force required to Accelerated a 15 kg object at $2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$, with a F_{f} of 3 N ?

$$
\begin{aligned}
F & =m a \\
F_{p}-F_{f} & =m a \\
F_{p}-F_{f} & =m a+F_{f}
\end{aligned}
$$

$$
\begin{aligned}
& F_{p}=30+3
\end{aligned} \quad \text { Obviously } 3 \text { more Newton's }
$$

$$
\text { than without Friction }=3 N \text {. }
$$

