P12-8.0- Electrostatics Review

Assume test point "p" $=+1$

Electric Charge: a property of matter that causes it to experience a force when placed in an electric/electromagnetic field.

Coulomb: Unit of electrical charge, $C=6.24 E 18 e^{-}$(6 quintillion electrons)
Electric Field: A property of each point in space when charge is present in any form.
: Uniform between two oppositely charged plates

$\vec{E}=\frac{\vec{F}}{Q}$; Electric Field Strength $\frac{N}{C}, \frac{V}{m} \quad$| $\vec{F} ;$ Electrostatic Force (N) |
| :--- |
| $Q ;$ Quantity of Charge (Coulombs; C) |

A Charge is surrounded by an Electric Field

| Direction of Electric Field: | + Work to |
| :--- | :--- | Direction a Positve Charge would move. High Potential to Low.

overcome a Repulsive Force

As a charge moves along an electric field line, work is done by the electrical force. The energy gained or lost by this charge moving in the field is a form of potential energy.

Electric Potential: work needed per unit of charge to move a unit charge between the two points in an electric field. Or work done in carrying a unit charge from infinity to any point.

Voltage: (Electric Potential Difference) the difference in electrical potential between two points.

1 V is the number of electrons a Joule (Nm) can move between two points
Electric Potential Energy : Energy needed to move a charge in an Electric Field

$$
E_{p}=\frac{k Q Q}{r} ; J
$$

+ charges move towards a low potential, away from high potential
- charges move towards a high potential, away from a low potential

A stationary charge will produce an electric field in the surrounding space.
If the charge is moving a magnetic field is also produced.
An electric field can also be produced by a changing magnetic field.
Electromagnetic Field: A property of space caused by an electric charge.

P12-8.0-Electrostatics Formulas Review

Coulombs Law : Electrostatic Force - Between two charged particles

