C12 - 1.9 - Limit IVT Notes

There is a value x = c between a and b; where f(x) = 0, & Continuous therefor $x^2 = 3$ must have a solution.

Use the intermediate value theorem to prove there is a solution for x, v & a.

 $0 = x^2 - 2x - 3$; [2,4] $x^2 = 2x + 3$; [-2,0]

$\left(\frac{1}{2}\right)$	v						1)		(1	n S	1)			C	ı	(1	$\frac{n}{r^2}$	-)	
_						Ī				_	-	5	,						-		2		
_			T		Ī	T					_	2				T				2	2		
3						Ī					3	3								(5		
5						Ī					5	5								ļ	5		
ç											ç)								(5		
							1	2	-			5 2 3	,)			<i>c</i>	<i>i</i>	_	(2		