C12 - 2.7 - Derivatives Hmk

- $f(x) = x^2$, Find y = mx + b (Equation of tangent function)@ x = 2
- $f(x) = \frac{1}{x}$, Find y = mx + b (Equation of tangent function)@ x = 2
- $f(x) = x^2 + 2x$, Find y = mx + b (Equation of tangent function)@ x = 1

 $f(x) = x^3$, Find y = mx + b (Equation of tangent function)@ x = -1

 $f(x) = \sqrt{x-2}$, Find y = mx + b (Equation of tangent function)@ x = 6

C12 - 2.7 - Derivatives Hmk

Find the equation of the tangent line.

equation/s tangent to the $\frac{dy}{dx}|_{x=\#}$ graph to the exterior point: $y = x^{2}, (0, -1)$ $y = \frac{1}{x}, (3, -1)$ $y = x^2 + x$, at x = 2. $y = \frac{-2}{x - 1}$, at x = 2. $y = 2\sqrt{x}, (0,3)$ $y = \sqrt{x+1}$, at x = 10 $y = \frac{1}{\sqrt{x-2}}, at x = 3$ $y = \sqrt{x}(x + 1), at x = 4$ $y = \sin 2x at x = \frac{\pi}{4}$ $y = xe^{2x} at x = 1$ (6,0), $y = 2\sqrt{x}$

Find the point/s and equation/s through the point closest to the graph: $(3,1), x^2 + y - 1 = 0$

Find the point/s on and

If
$$y = u^3$$
, and $u = \sqrt{x} + x$, find $\frac{dy}{dx}|_{x=1}$

Find the point/s on the graph:

$$y = 2x^2 - 4x - 6$$
 parallel to the equation $x + \frac{y}{4} = -16$.
 $y = \frac{2}{x-2}$ have a perpendicular tangent to the line $2y = x + 8$.
 $y = x^2 - 2x - 3$
 $y = x^3 + 12x^2 + 36x$
 $x^2 + y^2 = 4$

Find the value of k if the equation $y = x^3 + 1$ is tangent to the line y = 3x + k.

Find the Derivative of the Inverse of $f(x) = x^3 + 1$ at f(x) = 9