C12 - 2.8 - LinApprox/NewMeth/IVT/MVT Notes

 $Slope \times horizontal\ distance = height$

$$y = \sqrt{x}$$

$$y' = \frac{1}{2\sqrt{x}}$$

$$m = \frac{1}{2\sqrt{4}}$$

$$m = \frac{1}{4}$$

$$y - y_1 = m(x - x_1)$$

$$L(x) = y_1 + m(x - x_1)$$

$$L(x) = 2 + \frac{1}{4}(3 - 4)$$

$$L(x) = 2 - \frac{1}{4} \approx 1.75$$
Linear Approximation

Overestimate (concave down.)

There is a value x=c between a and b; where f(x)=0, & Continuous therefor $x^2=3$ must have a solution.

There is a value x=c between a and b; where $f'(c)=\frac{f(b)-f(a)}{b-a}$, & Continuous [a,b] & Differentiable [a,b].