C12-3.2-Max/Min/Concavity Derivative Tests Review

Find/Label any Max's/Min's/CP's/Inflection Points/IP's and state Intervals of Increase/Decrease/Concavity and Graph.

1st Derivative test
$y=x^{3}-12 x$
$y^{\prime}=3 x^{2}-12$
$0=3 x^{2}-12$
$3 x^{2}=12$
$x^{2}=4$
CP: Critical Point

Find the 1 st $\frac{d}{d x}$
Set the $\frac{d}{d x}=0$

Solve : Critical Values

Prove the 1st derivative is positive to the left of -2 . Negative between -2 and 2 . And positive to the right of 2.

$$
y^{\prime}=3 x^{2}-12 \quad y^{\prime}=3 x^{2}-12
$$

$$
\begin{array}{ll}
f^{\prime}(-5)=3(-5)^{2}-12 & f^{\prime}(5)=3(5)^{2}-12 \\
f^{\prime}(-5)=+ & f^{\prime}(5)=+
\end{array}
$$

$$
y^{\prime}=3 x^{2}-12
$$

$$
\begin{aligned}
& f^{\prime}(0)=3(0)^{2}-12 \\
& f^{\prime}(0)=- \\
& \text { Lncreasing: }(-\infty,-2) U(2, \infty) \\
& \text { Decreasing: }(-2,2)
\end{aligned}
$$

$$
\begin{array}{rlrl}
y & =x^{3}-12 x & y & =x^{3}-12 x \\
f(-2)=(-2)^{3}-12(-2) & f(2) & =(2)^{3}-12(2) \\
f(-2)=16
\end{array}
$$

Critical Points

2nd Derivative test

$$
\begin{aligned}
y^{\prime} & =3 x^{2}-12 & & \text { Find the } 2 \text { nd } \frac{d}{d x} \\
y^{\prime \prime} & =6 x & & \text { Set the } \frac{d}{d x}=0 \\
0 & =6 x & & \text { Solve : Critical Values } \\
x & =0 & &
\end{aligned}
$$

Prove 2nd derivative is negative to the left of 0 and positive to the right of 0 .

$$
\begin{aligned}
y^{\prime \prime} & =6 x & y^{\prime \prime} & =6 x \\
f^{\prime \prime}(-1) & =6(-1) & f^{\prime \prime}(-1) & =6(-1) \\
f^{\prime \prime}(-1) & =- & f^{\prime \prime}(-1) & =+
\end{aligned}
$$

Concave Down: $(-\infty, 0)$
Concave Up: $(0, \infty)$

$$
\begin{aligned}
& y=x^{3}-12 x \\
& y=(0)^{3}-12(0) \\
& y=0
\end{aligned}
$$

Inflection Point

