C12-5.1-Int Hmk

Find the area under the graph $y=x^{3}$ from zero to two using four ($\mathrm{n}=4$) rectangles. Using Riemann's LRAM, MRAM \& RRAM, and Trapezoidal Rule .

Integrate the following. (Find the Antiderivative) Don't forget to check by taking the derivative. And to add C!

$$
\begin{aligned}
& \int 5 d x \quad \int 2 x d x \quad \int x^{2} d x \quad \int \frac{x^{2}}{3} d x \quad \int 6 x^{2} d x \quad \int\left(6 x^{2}+2 x\right) d x \quad \int \sqrt{x} d x \\
& \int \frac{1}{x} d x \quad \int(x+3)^{2} d x
\end{aligned}
$$

Find the area under the curve using Integration. Confirm the area by geometry.

$$
y=2 x \quad 0 \leq x \leq 3 \quad y=\sqrt{9-x^{2}} \quad \text { Semicircle }
$$

Find the area under the curve using Integration.

$$
y=x^{2} \quad 0 \leq x \leq 2 \quad y=\sqrt{x} \quad 0 \leq x \leq 9
$$

Find the area between the curves using Integration.

$$
y=x \quad y=\sqrt{x} \quad y=x^{2}-1 \quad y=x+1 \quad y=x^{3} \quad y=4 x
$$

Find the Volume of revolution around the x-axis. Draw a graph.
$y=x^{2}$
$0 \leq x \leq 2$
$y=\sqrt{x}$
$0 \leq x \leq 4$

Find the Volume of revolution around the x-axis between the two functions by Integration.

$$
y=x^{2} \quad y=x \quad 0 \leq x \leq 1
$$

