C10-1.1 - History

History
Wedge 2.5 M yo
Fire 300K yo
Atlatl 20K yo
(3000BC) - Numbers, measurement, and arithmetic, (America, Egypt, Mesopotamia).
(2650BC) - Cubit-rod, Nippur, (Iraq).
(2600BC) - Scale, (Egypt).
(2100BC) - Area, Volume, Triangle Ratios, Quadratics, (Egypt, Babylon).
(2000BC) - Pythagorean Triples, Multiplication, (Egypt, Babylon).
(1700BC) - Square Roots, (Babylon).
(1800BC) - Fractions, (Egypt).
Baudhayana (700BC) - Pythagoras Theorem, (India).
Hippasus (500BC) - Irrational Numbers.
(500BC) - Spherical Earth, Straight Edge, Compass.
(Greece).
Empedocles (420BC) - Earth/Air/Fire/Water.
Menaechmus (400BC) - Co-ordinate Geometry, Conic Sections.
Aristotle (400BC) - Philosophy. (Greece)
Democritus (380BC) - Atom (idea).
Euclid (300BC) - Elements, Law of Co/Sine, Optics.
Pingala (300BC) - Pascal's Triangle, (India).
Archimedes (300BC) - Lever/Pulley/Screw/Gear -
Wheel/Axle/Inclined Plane, Volume Sphere, Trig Sum \& Difference ID.
Eratosthenes (300BC) - Earth Circumference.
Hipparchos (200BC) - Distance to Moon \& Sun.
(210) - Negative Numbers, (China).

Aryabhata (499) - Zero, Cube Roots, Eclipse Chart.
Brahmagupta (628) - Quadratic Equation, Notation.
Mahavira (850) - nCr.
Halayudha (975) - Binomial Coefficients into Pascal's
Triangle.
Madhava of Sangamagrama (1380) - Taylor Series Co/Sine, Pi.
Gerolamo Cardono (1500's) - Complex Numbers, General Cubics, Probability.
Scipione del Ferro (1500) - Depressed Cubic.
Nicolaus Copernicus (1543) - Heliocentric Model.
Niccolo Tartaglia (1556) - Parentheses.
Robert Recorde (1557) - Equal Sign.

William Gilbeet (1600) - Earth's Magnetic Field. Johannes Kepler (1609-19)- Three Laws of Planetary Motion.
Galileo Galilei (1610) - Telescope Observations.
Robert Boyle (1660) - $P \approx \frac{1}{V}$
Sir Isaac Newton (1672) - Visible Light Spectrum, Principia*.
Leibniz/Newton (1675) - Infinitesimal Calculus.
Anton Van Leeuwennhoek (1675) - Microscope.
Ole Romee (1676) - Speed of Light.
Thomas Bayes (1763) - Bayes Theorem.
Lussac/Jacques Charles (1788) - Ideal Gas Law
Alessandro Volta (1800) - Electrochemical Series \&
Battery.
Lavoisier (1780) - Father of Chemistry, Conservation of Mass Law
J. Dalton (1805) - Law of Partial Pressure (Father of Atomic Theory)
Avogadro (1811) - Avogadro's Hypothesis
Hans Christian Orsted (1820) - Electromagnetism.
George Ohm (1827) - Ohm's Law.
Amedeo Avagadro (1827) - Avogadro's Law.
Nicolai Lobachevsky (1830) - Non-Euclidean Geometry.
Michael Faraday (1831) - Electromagnetic Induction.
Charles Babbage (1837) - Analytical Engine.
James Joule (1843) - Conservation of Energy Law
Kelvin (1848) - Kelvin Temperature Scale
James Clerk Maxwell (1864) - Theory of
Electromagnetism.
Mendeleev (1869) - Periodic Table
Gibbs (1878) - Applied Statistics to Chemistry
Maxwell (1877) - Distributions of Molecular Velocities and Entropy
Arrhenius (1883) - Theories of Ions and Acids
Le Chatalier (1885) - Dynamic Equilibrium (Le C's
Principle)
J.J. Thompson (1897) - Electron

Marie Curry (1898) - Radium.
Max Plank (1900) - Quantum Theory/Plank's Constant $E=h f$
Ernest Rutherford (1905) - Protons \& dense Nucleus
Albert Einstein (1905) - $E=m c^{2} /$ Space Time
Neils Bohr (1915) - Bohr Model
Lewis (1910) - Lewis Structure
Edwin Hubble (1924) - Hubble Telescope.
Erwin Schrödinger (1925) - Wave Equation/Function
(S's Cat)
Werner Heisenberg (1925) - Uncertainty Principle
(Position \& Momentum)
LIGO (2016) - Gravitational Waves.
(2019) - Black Whole Image.

C10-1.2-Properties/Phases

Chemistry : The study of matter and it's properties, composition and structure, and how it changes and energy absorbed or released.
Matter : Anything that exists that has definite mass and volume.
Mass : Quantity of matter in an object.
Weight : Force of gravity on an object.
Physical Property : A substance characteristic that can be observed or measured without changing identity of substance. (color, density, hardness, conductivity, melting/boiling points.)
Chemical Property : A substance characteristic observed in a chemical reaction. (flammability, toxicity, acidity, reactivity, chemical stability, heat of combustion.)

Physical change : Melting, boiling, freezing, dissolving, evaporation, condensing, crushing, breaking, cutting, bending, stretching.
Chemical change : Corrosion, rusting, rotting, burning, cooking, combustion, chemical decomposition.
Intensive properties : Depends on the makeup of the substance like boiling point, density and hardness. Extensive properties : Depends on how much of the substance is present like mass, energy and volume.

Inter Molecular Forces (IMF) : Attractive forces between molecules. (Opposites attract)
Phases of Matter :

Solids: (s)
-Strong attractive forces.
-Molecules, atoms or ions are arranged in a regular geometric pattern (Crystal Lattice) and vibrate in one place but do not move relative to each other. -Definite shape or volume.

Liquids: (I)
Strong attractive forces.
-Molecules, atoms or ions can flow past each other.
-Viscosity is the resistance to flow (increases as temperature decreases). -In absence of gravity form . a perfect sphere.

Gases: (g)
-Weak attractive forces.
-Molecules are extremely far apart relative to the size of the molecules. -Travel in straight lines until elastic collisions (don't lose kinetic energy). -Move faster at higher temperature. -Only phase affected by changes in pressure.
-Take shape of container.

Equilibrium : A condition where rates of opposing changes are equal. Phase equilibrium : During a phase change, both phases exist at equilibrium.

C10-1.3-Matter Chart

Homogeneous: Composition is uniform throughout. Pure. Only one phase. Heterogeneous : Visibly different substances or phases.

Substance : Constant chemical composition and characteristic properties. (Homogeneous)

Solution : A homogeneous mixture of two or more substances. (Saturated when solvent dissolved maximum solute.)
Solvent : Able to dissolve other substances.
Solute : Minor component in a solution.
Aqueous: Dissolved in water. Cannot be separated by filtering. Transparent.
Tinctures : Solute is dissolved in alcohol. (Some things cannot dissolve in water)
Amalgam : A solid solution where metal is dissolved into mercury. Commonly Ag and Au.
Alloys : Metals can not chemically bond with each other, but can be mixed to enhance their properties.

Colloid : Microscopically dispersed, translucent (allows passage of light). Milk, Fog. Smoke. Blood.
Suspension : Fluid containing solid particles large enough to form sedimentation, opaque (blocks passage of light). Dust in air. Oil in Water. Sand/Mud in water.

C10-1.4-Separation Types

Mechanical Mixtures :

Hand Separation: By Sieve, or Magnet.

Solutions:

Distillation : Process involving the conversion of a liquid into vapour form that is subsequently condensed back into liquid form.

Heat Source
Receiving Flask
/Stand

Solvent Extraction : The separation of a particular substance from a mixture by dissolving that substance in a solvent that will dissolve it, but which will not dissolve any other substance in the mixture

Filtration : Solid particles are removed from a liquid or gas through a filter.

Evaporation : Type of vaporization (conversion of liquid or solid into gas).

Recrystallization: a purification technique for solid compounds.

Gravity : Separation is an industrial method of separating two components, either a suspension, or dry granular mixture where separating the components with gravity is sufficiently practical.

Chromatography : Process for separating components of a mixture. Mixture is dissolved in a substance called mobile phase, carries it through a second substance called stationary phase.

Miscible : Two liquids that combine to form a homogeneous solution. Immiscible : Little to no miscibility.

C11-1.5-Energy/Heat

Energy - Ability to do work*.
Kinetic - Energy of motion (Increase with temperature). Potential - Stored energy.

Translation
Energy: Causes
the molecule to
 travel in a straight line Thermometer

Calorimeter: Device used to measure amount of heat involved in a chemical or physical process. For example, when an exothermic reaction occurs in solution in a calorimeter, the heat produced by the reaction is absorbed by the solution, which increases its temperature.

How much Energy, 50 g water $20^{\circ} \mathrm{C} \rightarrow 80^{\circ} \mathrm{C}$

$$
Q=m c \Delta T
$$

Negative if gives off heat (Cooled)
Find the specific heat capacity of a 100 g of an unknown material at $150^{\circ} \mathrm{C}$ in 50 g of
water at $21^{\circ} \mathrm{C}$ and the final temperature was $32^{\circ} \mathrm{C}$.
Find the final temperature of 4000 J heat to a 70 g sample of water at $35^{\circ} \mathrm{C}$.

$$
4000=(50)(4.184)\left(T_{f}-60\right)
$$

$$
\frac{4000}{209.2}=\frac{209.2}{209.2}\left(T_{f}-60\right)
$$

$$
19.12=T_{f}-60
$$

$$
+60+60
$$

$$
\begin{aligned}
\Delta Q & =-\Delta Q \\
m c \Delta T & =-m c \Delta T \\
100 c(32-150) & =-50(4.184)(32-21) \\
\frac{-11800 c}{-11800} & =-\frac{2301.2}{-11800} \\
c & =0.195 \frac{J}{g^{o} C}
\end{aligned}
$$

Heat of Fusion Amount of Energy required to completely melt (convert from (s) to (I)) a substance. Heat of Vaporization Amount of Energy required to completely vaporize (convert from
(I) to (g)) a substance.

How much Energy is required to heat $35.3 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ from $-20^{\circ} \mathrm{C}$ to $115^{\circ} \mathrm{C} . \mathrm{c}=4.184 \frac{\mathrm{~J}}{\mathrm{~g} \mathrm{C}^{\circ}}, H_{f}=334$

$$
\begin{align*}
& Q=m c \Delta T \quad Q=m c \Delta T \quad Q=m H_{v} \quad H_{v}=2260 . \\
& Q=35.3(2.06)(0-(-20)) \quad Q=35.3(4.184)(100-(0)) \quad Q=35.3(2260) \\
& Q=1454.36 D=m H_{f} \quad Q=14769.52 D Q=m c \Delta T \quad Q=79778 \\
& \begin{array}{ll}
Q=35.3(334) \\
Q=11790.2 J & Q=35.3(4.184)(115-(100)) \\
Q=2215.43 J
\end{array} \\
& Q=1454.36+11790.2+14769.53+79778+2215.43=
\end{align*}
$$

C10-1.6-Scientific Notation/Ops Notes

Positive Exponent :
Decimal to Right

Negative Exponent : Decimal to Left

Write in Scientific Notation $\# . \# \# \ldots \times 10^{\#} \quad 1 \#(1-9)$ in front of decimal
9624. 9.624×10^{3} Move Decimal 3 to Left $5000000 .=5.0 \times 10^{6}$ Move Decimal 6 to Left $0.000000367=3.67 \times 10^{-7}$ Move Decimal 7 to Right

Operations

C10-1.7-Conversions Notes

Conversion Factors

Prefixes
Attach Prefix Exponent to the Base Unit!
How many Litres are in 50 Millilitres?
$50 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.05 \mathrm{~L}=5 \times 10^{-2} \mathrm{~L}$ 〇R $50 \mathrm{~mL} \times \frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}=0.05 \mathrm{~L}=5 \times 10^{-2} \mathrm{~L}$
How many Micrometers in 4 Meters?

$$
\text { Calculator } 50 E-3=0.05 \quad E-3: \times 10^{-3}
$$

$$
4 \mathrm{~m} \times \frac{1000000 \mu \mathrm{~m}}{1 \mathrm{~m}}=4000000 \mu \mathrm{~m}
$$

How many millimeters in $\mathbf{2 4}$ kilometers?
$24 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=24000 \mathrm{~m}$
$24000 \mathrm{~m} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=2400000 \mathrm{~cm}$ OR $4 \mathrm{~m} \times \frac{1 \mu \mathrm{~m}}{10^{-6} \mathrm{~m}}=4000000 \mu \mathrm{~m}$ Calculator

$2400000 \mathrm{~cm} \times \frac{10 \mathrm{~mm}}{1 \mathrm{~cm}}=24000000 \mathrm{~mm} \mathrm{R}$ $24 \mathrm{~km}>\frac{10^{6} \mathrm{~mm}}{1 \mathrm{~km}}=24000000 \mathrm{~mm}$ $24 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{10 \mathrm{~mm}}{1 \mathrm{~cm}}=24000000 \mathrm{~mm}=2.4 \times 10^{7} \mathrm{~mm}$

If Granite is $\mathbf{1 L = 5 . 5 \mathrm { kg } \text { : }}$

Find the volume, in mL \& cm^{3} of $\mathbf{2 2 k g}$ of granite.

$$
7 L \times \frac{5.5 \mathrm{~kg}}{1 L}=37.5 \mathrm{~kg}
$$

Find the mass, in grams, of 5.00 mL of granite.

$$
\begin{aligned}
& 22 \mathrm{~kg} \times \frac{1 L}{5.5 \mathrm{~kg}}=4 \mathrm{~L} \\
& 4 L \times \frac{1 \mathrm{~mL}}{10^{-3} L}=4000 \mathrm{~mL} 1 \mathrm{ml}=1 \mathrm{~cm}^{3} \\
& 4000 \mathrm{~mL} \times \frac{1 \mathrm{~cm}^{3}}{1 \mathrm{~mL}}=4000 \mathrm{~cm}^{3}
\end{aligned}
$$

How many kilograms of granite in seven liters?
$5.00 \mathrm{~mL} \times \frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}=0.005 \mathrm{~L}$
$0.005 \mathrm{~L} \times \frac{5.5 \mathrm{~kg}}{L}=0.0275 \mathrm{~kg}$
$0.0275 \mathrm{~kg} \times \frac{1 \mathrm{~L}}{5.5 \mathrm{~kg}}=0.005 \mathrm{~L}$

Express $\frac{45 \mathrm{~km}}{1 \mathrm{hr}} \mathrm{in} \frac{\mathrm{m}}{\mathrm{s}}$.
$v=45 \frac{\mathrm{~km}}{\mathrm{hr}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=12.5 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \begin{aligned} & \text { Or do the top and } \\ & \text { bottom separately }\end{aligned}$
Express $4 \frac{\mu m}{m s} \boldsymbol{t o} \frac{G m}{h r}$.
$4 \frac{\mu m}{m s} \times \frac{10^{-6} m}{\mu m} \times \frac{1 G m}{10^{6} m} \times \frac{1 \mathrm{~ms}}{10^{-3} s} \times \frac{60 s}{1 \min } \times \frac{60 \mathrm{~min}}{h r}=1.44 \times 10^{-5} \frac{\mathrm{Gm}}{\mathrm{hr}}$

How many meters squared (m^{2}) in 2 kilometers squared ($\mathbf{k m}^{2}$)?

How many centimeters cubed
$\left(\mathrm{cm}^{3}\right)$ in 1 meter cubed $\left(\mathrm{m}^{3}\right)$

$$
2 \mathrm{~km}^{2} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=2000000 \mathrm{~m}^{2} \quad 1 \mathrm{~m}^{2} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{100 \mathrm{~cm}}{1 m}=10000 \mathrm{~cm}^{3}
$$

C11-1.8-Significant Figures Notes

