C11 - 5.3 - Electron/Ion Configuration/Core Notation Notes

A maximum of two electrons can be put in each orbital (superscript/blank) Row 3 Row 3 Cont Row 2 Row 2 Cont Row 1 (Horizontal) $Li (1s^22s^1)$ $B (1s^22s^22p^1)$ $Na (1s^22s^22p^63s^1)$ $Al (1s^22s^22p^63s^23p^1)$ $H(1s^{1})$ Be $(1s^22s^2)$ C $(1s^22s^22p^2)$ Mg $(1s^22s^22p^63s^2)$ Cl $(1s^22s^22p^63s^23p^5)$ $He(1s^2)$ Ne $(1s^22s^22p^6)$ $Ar(1s^22s^22p^63s^23p^6)$ The superscript is the number of electrons on that level. The Coefficient is the level. Row 4 Row 4 Continued $K(1s^22s^22p^63s^23p^64s^1)$ $Sc (1s^22s^22p^63s^23p^64s^23d^1)$ $Ca (1s^22s^22p^63s^23p^64s^2)$ **Both Energy** $Cr(1s^22s^22p^63s^23p^64s^13d^5)$ $4s^23d^4 \rightarrow 4s^13d^5$ levels would $Ni (1s^22s^22p^63s^23p^64s^23d^8)$ rather be half $Cu(1s^22s^22p^63s^23p^64s^13d^{10})$ $4s^23d^9 \rightarrow 4s^13d^{10}$ full $Zn (1s^22s^22p^63s^23p^64s^23d^{10})$ $Br(1s^22s^22p^63s^23p^64s^23d^{10}4p^5)$ Negative Ions: Positive Ions: Remove'p'before's'before 'd' $O([He]2s^22p^4) + 2e^- \rightarrow O^{2-}([He]2s^22p^6)$ $Sn([Kr]5s^24d^{10}5p^2) - 2e^- \rightarrow Sn^{2+}([Kr]5s^24d^{10})$ $Sn([Kr]5s^24d^{10}5p^2) - 4e^- \rightarrow Sn^{4+}([Kr]4d^{10})$ $Cl([Ne]3s^23p^5) + 1e^- \rightarrow Cl^-([Ne]3s^23p^6)$ Full Notation: Core Notation: Row 1 Row 3 It's [Noble gas] $Na (1s^2 2s^2 2p^6 3s^1)$ $H(1s^{1})$ $H(1s^{1})$ $Na([Ne]3s^1)$ right above it* $Mg(1s^22s^22p^63s^2)$ $Mg([Ne]3s^2)$ He $(1s^2)$ $He(1s^2)$ then over to it $Cl(1s^22s^22p^63s^23p^5)$ $Cl([Ne]3s^23p^5)$ $Ar(1s^22s^22p^63s^23p^6)$ $Ar([Ne]3s^23p^6)$ Row 2 Row 4 ... $Li (1s^22s^1)$ $Li ([He]2s^1)$ $K(1s^22s^22p^63s^23p^64s^1)$ Be $(1s^22s^2)$ Be ($[He]2s^2$) $K ([Ar]4s^1)$ $Kr([Ar]4s^23d^{10}4p^6)$ $Kr (1s^22s^22p^63s^23p^64s^23d^{10}4p^6)$ $O(1s^22s^22p^4)$ $O([He]2s^22p^4)$ $Ne([He]2s^22p^6)$ $Rb (1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^2)$ $Rb([Kr]5s^1)$ Ne $(1s^22s^22p^6)$ Properties of metals: Period: Elements in a row Shiny with a metallic lustre Least Metallic Good conductors of heat and electricity Group or Sometimes flexible if thin Family: Non-Malleable – compressed easily Elements Most Metals Ductile – easily stretch Metals in a column **V** Metallic Solid phase at room temperature except Hg Lanthanides Properties of non-metals: Actinides Alkali Metals Gases, liquids and weak solids at room temperature Alkaline Earth Metals Bad conductors of and electricity Halogens Electron Affinity: change in energy of a atom when electron is added. Nobel Gases Electronegativity: the tendency of an atom Ionization energy: the energy required to take to attract/hold electrons. 个 Halogens away an electron from an uncharged atom. Increases Increases *Increases* N/A^* Inc He, Ne, Ar, Rn 个 Nobel Gases Less p⁺ pulling in e⁻ Size of Atom: $F - 9 p^+$ pulling 7 valence e^- Inc *Increases* Increases (Tighter shell Than) (More Shells) $0 - 8 p^+$ pulling 6 valence e^- . kqq r^2 Size of Ion*: (Anions (-ve) Larger, gain electron/Cations (+ve) Smaller, lose electrons)