C12－0．0－Methods 12 Rates／Eq／Solubility LABS Ripple Effects

Moles Reactants used up＝Moles Products are made
\downarrow Temp shift to side with heat（Larger hurdle to cross）

Only Temp can affect $K_{e q}$ ． 5% Rule
Solids and Pure Liquids exempt．Assume $x \ll \#$
$\uparrow[$ Reactant $] \rightarrow$ 个Forward Rate \quad Pressure（g）constant at Eq Mass of（s）constant at Eq
Thermodynamics Laws
1）Energy cannot be created or destroyed．
2）For a spontaneous process，entropy of the universe increases．
3）A perfect crystal at zero Kelvin has zero entropy．
S ：Entropy $\left(\frac{J}{K}\right) \quad \begin{aligned} & +\Delta S \text { favours products } \\ & \Delta H \text { favours Heat side }\end{aligned}$
Spontaneous reaction occurs when $\Delta S>0 \& \Delta H<0$

个Moles \rightarrow 个Entropy
More Entropy Shifts ？？？

Solubility
Ionic／Molecular Solutions
$K_{s p}$（Table）

$$
\begin{gathered}
\text { Solubility Product Constant } \\
K_{s p}=\left[A^{+}\right]^{a}\left[B^{-}\right]^{b} \\
A B_{b(s)} \rightleftharpoons a A_{(a q)}^{\#+}+b B_{(a q)}^{\#-}
\end{gathered}
$$

Reactant is a Solid

Conductivity
－More soluble
－个［］
－More ions

20 drops $=1 \mathrm{~mL}$

Solubility Table In Water（Ability／（In）to be soluble）Solubility Product Table（Higher \＃，Higher Solubility）

Concentration	Precipitate：	$Q<K_{s p}$	Cannot Form	$Q=K_{s p}$
	Barely saturated solution formed	$Q>K_{s p}$ Will Form Solubility		

Acids，Bases \＆Salts
Indicators Table
Strength Table－Higher \＃，Higher
Strength of Acid（To give an H^{+}）

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {vs. }\left[\mathrm{OH}^{-}\right] \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx\left[\mathrm{H}^{+}\right]^{*}
$$

hydronium vs hydroxide

Amphiprotic

Arrhenius
Bronsted Lowrey
Lewis
Hydrolysis
Titrations
Buffers

$p K_{w}=p H+p O H=14$
Pure Water＊
$p K_{w}=-\log \left[K_{w}\right]$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$K_{\text {eq }}=\frac{K_{a}(\text { reactant acid })}{K_{a}(\text { product acid })}$

HReact + Prod $^{-1} \rightleftharpoons$ React $^{-}+$HProd
Ionization Constants
K_{a} ：Acid ，K_{a} ：Base

	Ionization	Conjugate Pairs（See Acid Table）
Acid－Donor p^{+}	Acid $@ H_{n(a q)}^{+}+H_{2} O_{(l)} \rightleftharpoons @ H_{n-1(a q)}+H_{3} O_{(a q)}^{+}$	（Acid，Base）$K_{w}=K_{a} \times K_{b}=1 \times 10$
Base－Acceptor p^{+}	Base $@ H_{n(a q)}+H_{2} O_{(l)} \rightleftharpoons @ H_{n+1(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}$	$@ H_{n}^{+}, @ H_{n-1}$

As pH increases，$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$decreases．（Less Acidic）$\uparrow K_{a}$ As pOH increases，$\left[\mathrm{OH}^{-}\right]$decreases．（More Basic）$\uparrow K_{b}$

Stronger Acid favours other side．
$\downarrow p H, \uparrow$ Ionization，\uparrow Conductivity

$\mathrm{H}_{2} \mathrm{O}+59 \mathrm{~kJ} \rightleftharpoons \mathrm{H}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}$
个Temp，Shifts Right
$\uparrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \& \uparrow\left[\mathrm{OH}^{-}\right]$
Still Neutral $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
If $\uparrow\left[\mathrm{H}^{+}\right], \downarrow \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$below 7^{*}
Still Neutral $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

$\%$ Dissociation $=\frac{\left[\mathrm{H}^{+}\right]}{[@]} \quad \%$ Ionization $=\frac{\left[\mathrm{OH}^{-}\right]}{[@]}$

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HS}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

$$
\text { 个Polarity H - A } \rightarrow \text { 个 Acidity* }
$$

Amphiprotic anions compare $K_{a} \& K_{b}$
Weak Acid－Ion bond strongly to a proton．
An Acid if placed in water，causes the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$to increase and the $\left[\mathrm{OH}^{-}\right]$to decrease．
A Base if placed in water，causes the $\left[\mathrm{OH}^{-}\right]$to increase and the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$to decrease．
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \quad$ Stronger an Acid，the weaker it＇s conjugate base（And Vice Versa）
Base
Base

