C12-5.0-Electrochemistry

Electrochemistry - The conversion of chemical energy to electric energy and back.
Electrochemical Cell - A system which produces electrical energy or causes a chemical reaction.

Reduction-Oxidization Reaction (Redox Reaction)

$$
2 A g_{(a q)}^{+}+C u_{(s)} \rightarrow 2 A g_{(S)}+C u_{(a q)}^{+} \quad \begin{aligned}
& \text { Add two half } \\
& \text { reactions. }
\end{aligned}
$$

Half (Cell) - Reactions
Reduction Reaction-Species gain electrons.
$2 A g_{(a q)}^{+}+2 e^{-} \rightarrow 2 A g_{(S)}$
Oxidation Reaction-Species lose electrons.
$C u_{(s)} \rightarrow C u_{(a q)}^{+}+2 e^{-}$

Ag is the Oxidizing Agent $\quad \mathrm{Cu}$ is the Reducing Agent (Reduced)
(Oxidized)
Oxidization Number - Charge an atom would possess if the species containing the atom were made up of ions.
The sum of the positive charges and the negative charges must equal the overall charge on the species.

$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$				P_{4}	$C r^{3+}$	SO_{4}^{2-}		
H	P	0		P	Chromium Oxidation \# $=+3$	S	O_{4}	
	$+x$	-2	Charge	$+x$	Oxidation Number of a	$+x$		
$\times 4$	$\times 2$	$\times 7$	\# of	+ 4	Oxidation Number of a monatomicion is its charge.	$\times 1$	$\times 4$	
	+2x	$-14=$	Neutral	$4 x=0$			-8	-2
$2 x-10=0$				$4 x=0$		$\begin{aligned} x-8 & =-2 \\ x & =6 \end{aligned}$		
				$x=0$				

Oxidation Number of an atom

 in its elemental form is ZeroCase \#1 100\% Spontaneous Reaction

$$
\begin{array}{cc}
\mathrm{ClO}_{2}+\mathrm{C} \rightarrow \mathrm{ClO}_{2}^{-}+\mathrm{CO}_{2}^{2-} & \\
\mathrm{Cl}=+4 \quad \mathrm{Cl}=+3 \quad \mathrm{C} \text { is Oxidized } \\
\mathrm{C}=0 \quad \mathrm{C}=+4 & \\
& \\
\text { No Reaction } & \text { No Reaction } \\
\mathrm{Cu} u^{2+}+2 e^{-} \leftarrow \mathrm{Cu} & \mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu} \\
\mathrm{Zn}^{2+}+2 e^{-} \leftarrow \mathrm{Zn} & Z n^{2+}+2 e^{-} \rightarrow \mathrm{Zn}
\end{array}
$$

Case \#2 No Reaction

$$
\begin{gathered}
\mathrm{Cu}^{2+}+2 e^{-} \leftarrow \mathrm{Cu} \quad E^{o}=+0.34 \\
\mathrm{Zn}^{2+}+2 e^{-} \rightarrow \mathrm{Zn} \\
E^{o}=-0.76 \\
\mathrm{Cu}^{2+}+\mathrm{Zn}(\mathrm{~s}) \\
\end{gathered}
$$

A reaction will be spontaneous if and only if there is a reactant to be reduced (on the left side) which is above a reactant on a reactant to be oxidized (on the right side).

C12-5.0-Electrochemistry

SO_{4}^{2-} in solution with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ will reduce? (Only if H^{+}is present) P. 199

$$
\mathrm{SO}_{4}^{2-}+4 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}+2 \mathrm{H}_{2} \mathrm{O}
$$

A^{2+} reacts with $C(s)$ but not with $B(s)$.
Arrange in decreasing tendency to reduce.

$$
\begin{aligned}
& B^{2+}+2 e^{-} \rightleftharpoons B_{(s)} \\
& A^{2+}+2 e^{-} \rightleftharpoons A_{(s)} \\
& C^{2+}+2 e^{-} \rightleftharpoons C_{(s)}
\end{aligned}
$$

F^{2+} reacts with $D(s), E(s) \& G(s)$.
No reaction between D^{2+} with any metals.
G^{2+} only reacts with $D(s)$.
Arrange in decreasing strengths as oxidization agents .
(Greatest tendency to reduce 1st.)

$$
\begin{aligned}
& F^{2+}+2 e^{-} \rightleftharpoons F_{(s)} \\
& E^{2+}+2 e^{-} \rightleftharpoons E_{(s)} \\
& G^{2+}+2 e^{-} \rightleftharpoons G_{(s)} \\
& D^{2+}+2 e^{-} \rightleftharpoons D_{(s)}
\end{aligned}
$$

	$F e^{2+}$	$A u^{3+}$	Ni^{2+}	$P b^{2+}$
$F e$		RX	RX	RX
$A u$	-		-	-
$N i$	-	RX		RX
$P b$	-	RX	-	

RX - Reaction Occurred (-No)

Acidic Solution

$$
\begin{array}{r|r|}
\mathrm{RuO}_{2} \rightleftharpoons \mathrm{Ru} & \text { Major! } \\
\mathrm{RuO}_{2} \rightleftharpoons \mathrm{Ru}+2 \mathrm{H}_{2} \mathrm{O} & \mathrm{O} \\
4 \mathrm{H}^{+}+\mathrm{RuO}_{2} \rightleftharpoons \mathrm{Ru}+2 \mathrm{H}_{2} \mathrm{O} & \mathrm{H} \\
4 e^{-}+4 \mathrm{H}^{+}+\mathrm{RuO}_{2} \rightleftharpoons \mathrm{Ru}+2 \mathrm{H}_{2} \mathrm{O} & \mathrm{e} \\
\hline
\end{array}
$$

$$
-4+4=0
$$

Acidic Solution

$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightleftharpoons 2 \mathrm{Cr}^{3+}$
$H_{2} \rightleftharpoons 2 H^{+}+2 e^{-}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightleftharpoons 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightleftharpoons 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$6 e^{-}+$
$+14$
$14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightleftharpoons 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$-6+14-2=6$

Basic Solution

$$
0=-1+3-2
$$

Convert to Basic w/ water equilibrium to cancel H^{+}.

$$
\begin{aligned}
& \mathrm{NO}_{2}^{-} \rightleftharpoons \mathrm{NO}_{3}^{-} \\
& +3 \quad+5
\end{aligned}
$$

$$
\Delta O N=(+5)-(+3)=+2
$$

Acidic Solution

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}^{-} \rightleftharpoons \mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+2 e^{-} \\
& \quad-1=-1+2+2
\end{aligned}
$$

Oxidization (ON \# Increases)

$$
\mathrm{MnO}_{4}^{-} \rightleftharpoons \mathrm{MnO}_{2}
$$

$$
+7 \quad+4
$$

$$
\Delta O N=(+4)-(+7)=-3
$$

Acidic Solution

$$
\begin{gathered}
e^{-}+2 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightleftharpoons \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
-1+2-1=0
\end{gathered}
$$

Reduction (ON \# Decreases)

$$
\begin{aligned}
& \mathrm{Pb} \rightleftharpoons \mathrm{HPbO}_{2}^{-} \\
& \mathrm{Pb}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPbO}_{2}^{-} \\
& \mathrm{Pb}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPbO}_{2}^{-}+3 \mathrm{H}^{+}+2 e^{-1} \\
& \begin{array}{l}
\mathrm{Pb}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPbO}_{2}^{-}+3 \mathrm{H}^{+}+2 e^{-1} \\
3 \mathrm{H}^{+}+3 \mathrm{OH}^{-} \rightleftharpoons 3 \mathrm{H}_{2} \mathrm{O}
\end{array} \\
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \\
& \mathrm{Pb}+\mathrm{OH}^{-} \rightleftharpoons 2 e^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HPbO}_{2}^{-}
\end{aligned}
$$

C12-5.0-Electrochemistry

$$
\begin{aligned}
& \mathrm{Os}+\mathrm{IO}_{3}^{-} \rightarrow \mathrm{OsO}_{4}+\mathrm{I}_{2} \quad \text { Acidic Solution } \\
& \begin{aligned}
\mathrm{Os} & \rightarrow \mathrm{OsO}_{4} \\
5\left(4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Os}\right. & \left.\rightarrow \mathrm{OsO}_{4}+8 \mathrm{H}^{+}+8 e^{-}\right) \\
0 & =8-8
\end{aligned} \\
& 20 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Os} \rightarrow 5 \mathrm{OsO}_{4}+40 \mathrm{H}^{+}+40 e^{-} \\
& 40 e^{-}+48 \mathrm{H}^{+}+8 \mathrm{IO}_{3}^{-} \rightarrow 4 \mathrm{I}_{2}+24 \mathrm{H}_{2} \mathrm{O} \\
& 8 \mathrm{H}^{+}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2} \mathrm{O}_{4}+4 \mathrm{I}_{2} \\
& \mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{MnO}_{2}+\mathrm{CO}_{2} \quad \text { Basic Solution } \\
& \mathrm{MnO}_{4}^{-} \rightarrow \mathrm{MnO}_{2} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{CO}_{2} \\
& 2\left(3 e^{-}+4 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\right) \quad 3\left(\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{CO}_{2}+2 e^{-}\right) \\
& -3+4-1=0 \quad-2=-2 \\
& 6 e^{-}+8 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-} \rightarrow 2 \mathrm{MnO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\
& 3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 6 \mathrm{CO}_{2}+6 e^{-} \\
& 3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+2 \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2} \\
& 8 \mathrm{H}_{2} \mathrm{O} \rightarrow 8 \mathrm{H}^{+}+8 \mathrm{OH}^{-} \\
& 3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+2 \mathrm{MnO}_{4}^{-}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{2}+6 \mathrm{CO}_{2}+8 \mathrm{OH}^{-} \\
& \text {Convert Redox } \\
& \text { to Basic }
\end{aligned}
$$

Disproportionation - A redox reaction where the same species is both reduced and oxidized.

$$
\begin{array}{ll}
\mathrm{ClO}_{2}^{-} \rightarrow \mathrm{ClO}_{3}^{-}+\mathrm{Cl}^{-} & \text {No } \mathrm{H}^{+} \text {left to convert } \\
3 \mathrm{ClO}_{2}^{-} \rightarrow 2 \mathrm{ClO}_{3}^{-}+\mathrm{Cl}^{-} & \text {to basic solutions. }
\end{array}
$$

Multiply to eliminate electrons
$\mathrm{Zn}+\mathrm{As}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{AsH}_{3}+\mathrm{Zn}^{2+}$
$\begin{gathered}\text { 2 } \\ \Delta O N=-12\end{gathered}$
$\Delta O N=+2$
$1\left(\mathrm{As}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{AsH}_{3}\right)$

$$
\begin{aligned}
5 \mathrm{U}^{4+}+2 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O} & \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{UO}_{2}^{2+}+4 \mathrm{H}^{+} \\
+20-2 & =4+10+4 \\
6 \mathrm{Zn}+\mathrm{As}_{2} \mathrm{O}_{3} & \rightarrow 2 \mathrm{AsH}_{3}+6 \mathrm{Zn}^{2+}
\end{aligned}
$$

Basic Solution

To balance charge* To balance H \& O
$\begin{aligned} 6 \mathrm{Zn}+\mathrm{As}_{2} \mathrm{O}_{3} & \rightarrow 2 \mathrm{AsH}_{3}+6 \mathrm{Zn}^{2+}+12 \mathrm{OH}^{-} \\ 6 \mathrm{Zn}+\mathrm{As}_{2} \mathrm{O}_{3} & \rightarrow 2 \mathrm{AsH}_{3}+6 \mathrm{Zn}^{2+}+12 \mathrm{OH}^{-}\end{aligned}$
$9 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{Zn}+\mathrm{As}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{AsH}_{3}+6 \mathrm{Zn}^{2+}+12 \mathrm{OH}^{-}$
$\mathrm{P}_{4}+\mathrm{P}_{4} \xrightarrow[\mathrm{LH}_{2} \mathrm{PO}_{2}^{-}+4 \mathrm{PH}_{3}]{\Delta \mathrm{ON}=+4}$
$\Delta \mathrm{ON}=-12$
Acidic Solution

$$
\begin{gathered}
3\left(P_{4} \rightarrow 4 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}\right) \\
1\left(P_{4} \rightarrow 4 P H_{3}\right) \\
\Delta O N=0
\end{gathered}
$$

$\begin{array}{l}\text { Combine/Divide } \\ \text { Balance }\end{array}$

$$
\begin{aligned}
4 \mathrm{P}_{4} & \rightarrow 12 \mathrm{PO}_{2}^{-}+4 \mathrm{PH}_{3} \\
6 \mathrm{H}_{2} \mathrm{O}+\mathrm{P}_{4} & \rightarrow 3 \mathrm{PO}_{2}^{-}+\mathrm{PH}_{3}+3 \mathrm{H}^{+}
\end{aligned}
$$

$$
0=-3+3
$$

C12-5.0-Redox Titrations Electrochemistry

Oxidizing Agents - KMnO_{4} is a very useful oxidizing agent. K^{+}is a spectator.
25 mL solution with unknown $\left[\mathrm{Fe}^{2+}\right]$ is titrated to an endpoint with acidic KMnO_{4}, requires 17.52 mL of acidified $0.1000 \mathrm{M}_{\mathrm{KMnO}}^{4}$. Find $\left[\mathrm{Fe}^{2+}\right]$.

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 e^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} ; E^{o}=1.51 \mathrm{~V}
$$

$$
\begin{aligned}
& 5\left(\mathrm{Fe}^{2+}\right.\left.\rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}\right) \\
& \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
\end{aligned} \quad \begin{aligned}
& \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Fe}^{3+} \quad \mathrm{MnO}_{4}^{-} \text {is purple in solution and } \mathrm{Mn}^{2+} \text { is colourless. }
\end{aligned}
$$

moles $\mathrm{KMnO}_{4}^{-}=0.1000 \frac{\mathrm{mmol}}{\mathrm{mL}} \times 17.52 \mathrm{~L}=1.752 \mathrm{mmol}$
moles $\mathrm{Fe}^{+}=1.752 \mathrm{mmol} \mathrm{KMnO}_{4}^{-} \times \frac{5 \mathrm{mmolFe}^{2+}}{1 \mathrm{mmolMnO}_{4}^{-}}=8.760 \mathrm{mmol} \quad\left[\mathrm{Fe}^{2+}\right]=\frac{8.760 \mathrm{mmol}}{25 \mathrm{~mL}}=0.3504 \mathrm{M}$

Reducing Agents - NaI or KI are common reducing agents.
25 mL of bleach is reacted with excess KI . The I_{2} produced requires exactly $46.84 \mathrm{~mL} 0.7500 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ to endpoint. Using Starch as an indicator find bleach [OCl^{-}].
$2 \mathrm{H}^{+}+\mathrm{OCl}^{-}+2 \mathrm{I}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \quad \mathrm{I}^{-}$is involved in reducing Laundry Bleach NaOCl.

moles $\mathrm{OCl}^{-}=17.57 \mathrm{mmol}_{2} \times \frac{1 \mathrm{mmol} \mathrm{OCl}^{-}}{1 \mathrm{mmol} \mathrm{I}_{2}}=17.57 \mathrm{~mol} \quad\left[\mathrm{OCl}^{-}\right]=\frac{17.57 \mathrm{mmol}}{25 \mathrm{~mL}}=0.7026 \mathrm{M}$

C12-5.0-Electrochemical Cell Electrochemistry

Electrode - A conductor at which a half-reaction occurs.

Anode - (Electrode)

- Which Oxidization occurs.
- Receiving Electrons from substance being Oxidized
- Toward which Anions travel

$$
\begin{aligned}
& A_{g} \rightleftharpoons \mathrm{Ag}^{+}+e^{-} \\
& \mathrm{Cu} \rightleftharpoons \mathrm{Cu}^{2+}+2 e^{-} \quad \text { Half-Reactions }
\end{aligned}
$$

Cu has a greater tendency to oxidize than Ag . Causing an excess of electrons on the Cu Anode. Electrons flow from Cu to Ag Electrode (via the wire.) Equilibrium is upset (Le Chatelier's Principle) \& Ag^{+}ions are forced to reduce at the Ag Cathode to $A g_{(s)}$. Water \& certain ions ($\mathrm{Cu}^{2+} \& \mathrm{NO}_{3}^{-}$in above) pass through the salt-bridge but total mixing is prevented. (Only ions flow in the solution)

$$
\begin{aligned}
& A_{g} \rightleftharpoons \mathrm{Ag}^{+}+e^{-} \\
& \mathrm{Ag}^{+}+e^{-} \rightarrow \mathrm{Ag}
\end{aligned}
$$

Voltage - Tendency for electrons the flow. $\frac{\text { Work }}{e^{-} \text {transferred }}$ (Electric Potential). Difference of Half-Cell Voltages*.

$$
2 H_{(a q)}^{+}+2 e^{-} \rightarrow H_{2(g)} \quad ; \quad E^{o}=0.000 \mathrm{~V}
$$

E^{o} - Standard $-25^{\circ} C$
Reduction

- Gases are at 101.3 kPa (1 atm)

Potential (Volts, - Elements are in Standard
V) in Standard States (Normal Phase)
State (o). $\quad-1 M$ concentration for all solutions in half-cell reactions

$H_{2(g)}$ passes over a platinum (Inert) metal electrode which accepts or supplies electrons to the half-cell as required.

C12-5.0-Electrochemical Cell Electrochemistry

Copper metal in $1 \mathrm{MCu}^{2+}$ solution.

$$
C u^{2+}+2 e^{-} \rightleftharpoons C u ; \quad E^{o}=0.34 V
$$

$$
\begin{aligned}
& \mathrm{Zn}^{2+}+2 e^{-} \rightleftharpoons \mathrm{Zn} ; \quad E^{o}=-0.76 \mathrm{~V} \\
& \mathrm{Zn} \rightleftharpoons \mathrm{Zn}^{2+}+2 e^{-} ; \quad E^{o}=+0.76 \mathrm{~V} \\
& \begin{array}{l}
\text { Reversing a reduction } \\
\text { reaction produces an } \\
\text { oxidation reaction. }
\end{array} \quad \begin{array}{l}
\text { Sign of } E^{o} \text { is } \\
\text { reversed. }
\end{array}
\end{aligned}
$$

$$
N i^{2+}+F e \rightarrow N i+F e^{2+}
$$

$$
\begin{array}{ll}
N i^{2+}+2 e^{-} \rightleftharpoons N i & ; \quad E^{o}=-0.26 V \\
F e^{2+}+2 e^{-} \rightleftharpoons F e & ; \quad E^{o}=-0.45 V
\end{array}
$$

$$
\begin{array}{cl}
N i^{2+}+2 e^{-} \rightleftharpoons N i & ; \quad E^{o}=-0.26 V \\
F e \rightleftharpoons F e^{2+}+2 e^{-} & ; \quad E^{o}=+0.45 V \\
\hline N i^{2+}+F e \rightarrow N i+F e^{2+} & ; E_{C E L L}^{o}=0.19 V
\end{array}
$$

$$
\begin{gathered}
-0.26-(-0.45)=0.19 \mathrm{~V} \\
E_{\text {CELL }}^{o}=E_{\text {REDUCTION }}^{o}-E_{\text {OXIDIZATION }}^{o} \\
-0.45-(-0.26)=-0.19 \mathrm{~V}
\end{gathered}
$$

Spontaneous $E^{o}>0$

$$
F e^{2+}+N i \rightarrow F e+N i^{2+}
$$

$$
F e^{2+}+2 e^{-} \rightleftharpoons F e \quad ; \quad E^{o}=-0.45 V
$$

$$
\begin{array}{cl}
F e^{2+}+2 e^{-} \rightleftharpoons F e & ; \quad E^{o}=-0.45 V \\
N i^{2+}+2 e^{-} \rightleftharpoons N i & ; \quad E^{o}=-0.26 V
\end{array}
$$

$$
\begin{array}{r}
N i \rightleftharpoons N i^{2+}+2 e^{-} \quad ; \quad E^{o}=+0.26 \mathrm{~V} \\
\hline F e^{2+}+N i \rightarrow F e+N i^{2+} \quad ; E_{C E L L}^{o}=-0.19 \mathrm{~V} \\
\text { Not Spontaneous } E^{o}<0
\end{array}
$$

Lead - Acid Storage Battery (Common in Automobiles) consists of altering pairs of "plates" made of $\mathrm{Pb}_{(s)} \& \mathrm{PbSO}_{2(s)}$, immersed in dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ (Sulphuric/Battery Acid).

Anode Reaction	$\mathrm{Pb}_{(s)}+\mathrm{HSO}_{4}^{-}$	$\rightarrow \mathrm{PbSO}_{4(s)}+\mathrm{H}_{(a q)}^{+}+2 e^{-}$
(Simply)	$\mathrm{Pb}_{(s)}$	$\rightarrow \mathrm{Pb}^{2+}+2 e^{-}$

Cathode Reaction
(Simply)

$$
\mathrm{PbO}_{2(s)}+\mathrm{HSO}_{4(a q)}^{-}++3 \mathrm{H}_{(a q)}^{+}+2 e^{-} \rightarrow \mathrm{PbSO}_{4(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

Overall Reaction

$$
\begin{align*}
\mathrm{Pb}_{(s)}+\mathrm{PbO}_{2(s)}+2 \mathrm{H}_{(a q)}^{+}+2 \mathrm{HSO}_{4(a q)}^{-} & \rightarrow 2 \mathrm{PbSO}_{4(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)} \\
\mathrm{Pb}+\mathrm{Pb}^{4+} & \rightarrow \mathrm{Pb}^{2+}+\mathrm{Pb}^{2+} \tag{Or}
\end{align*}
$$

As battery Discharges, spontaneously reacting to produce electrical energy,

$$
P b^{+4}+2 e^{-} \rightarrow P b^{2+}
$$ insoluble $\mathrm{PbSO}_{4(s)}$ forms a layer around the plates.

Batteries

Lead-Acid
Zinc-Carbon
Alkaline Dry-Cell
Fuel Cell

