M10-6.0-Graphing Notes
Graph:

M10-6.0 - Function Notation Notes

$f($ THAT $)=$?
Put (THAT) in for $f^{\prime} s x$

Put it in for x and solve for y or put it in for y and solve for x (Or from a graph)!

Variable Notation

$$
y=x+8
$$

$y=(-2)+8$ Put -2 in for x
$y=6$
Substitution
Repeat

$$
\begin{gathered}
y=6, x=? \\
y=x+8 \\
6=x+8 \\
-8 \quad-8 \\
x=-2
\end{gathered}
$$

$$
f(x)=6, x=?
$$

$$
f(x)=x+8
$$

Each x value only has one y value Is a function		
	x	y
	1	1
	2	2
	4	3
	5	6

A Relation is a Function if you run your pencil vertically along the page and only cross the line once.

$$
\begin{array}{r}
6=x+8 \\
-8 \quad-8 \\
x=-2
\end{array}
$$

Write in Function Notation

Write in Variable Notation

$C=2 \pi r, A=\pi r^{2} ; d=2 r$
Write $C(d) \& A(d)$

$$
\begin{array}{lll}
d=2 r & C=2 \pi r & A=\pi r^{2} \\
\frac{d}{2}=\frac{2 r}{2} & C(d)=2 \pi\left(\frac{d}{2}\right) & A(d)=\pi\left(\frac{d}{2}\right)^{2} \\
r=\frac{d}{2} & C(d)=\pi d & A(d)=\frac{\pi d^{2}}{4}
\end{array}
$$

