M8-10.0 - Solving Equations (OPPOSITE OPERATION BOTH SIDES)

	$\begin{array}{r} \begin{array}{r} x+4=2 x \\ -x \\ -x \\ 4=x \end{array} \sqrt{\text { Subtract } \mathrm{x} \text { from both }} \begin{array}{l} \text { sides } \end{array} \end{array}$ Work on the complicated side! I'm not afraid of adding/subtracting x to/from both sides.
$\begin{array}{cc} x-1=2 & x-1=2+1 \\ x-1=2 & x=3 \\ +1 & \text { Add } 1 \text { to both sides } \\ x-1=2 \\ +1 & -1+1=0 . \text { Cross it off. } \\ +1 & \\ x=3 & (3)-1=2 \end{array}$	$\begin{aligned} 3 x+3 x & =4+8 & & \text { Combine like } \\ 6 x & =12 & & \text { Terms } \\ \frac{\phi x}{\phi} & =\frac{12}{6} & & a+1=a+1 \\ x & & & \end{aligned}$ $2 x-3+3 x=5 x-3$
$$	$\begin{array}{cl} 4(x-3)=8 & \begin{array}{cl} \text { Multiply the outside } \\ 4 x-12 & =8 \end{array} \\ \text { by all of the inside. } \\ +12 & +12 \\ \cline { 2 - 2 } & \text { DMAS* Backwards } \\ \frac{4 x}{5} & =\frac{20}{5} \end{array}$
$\begin{array}{cc} \frac{x}{2}=3 & \begin{array}{l} \text { Multiply both sides by the } \\ \text { number below the letter. } \\ 2 \times \frac{x}{2} \end{array}=3 \times 2 \\ \frac{2}{2}=1 . \text { Cross it off. } \\ 2 \times \frac{x}{2}=3 \times 2 & \begin{array}{l} \frac{x}{x}=3 \times 2 \\ x=6 \end{array} \end{array}$	$(x+2)^{2}=\underset{(x+2)(x+2)}{ }$$x+2$ all squared$\begin{gathered} \frac{x}{2}+\frac{1}{4}=\frac{3}{4} \\ \left(\frac{x}{2}+\frac{1}{4}=\frac{3}{4}\right) \times 4 \\ 2 x+1=3 \\ \ldots \end{gathered}$ Multiply both sides by the LCD (and simplify at the same time.)
$\begin{array}{rlr} \frac{2}{x} & =1 \\ x \times \frac{2}{x} & =1 \times x \quad \text { Multiply both sides by } x . \\ \frac{2}{x} & =1 \times x & \\ 2 & =x & \end{array}$	
$\begin{array}{cll} x^{2}=25 & \text { Square/ } & \sqrt{x}=5 \\ \sqrt{x^{2}}=\sqrt{25} & \begin{array}{l} \text { Root } \\ \text { both } \end{array} & (\sqrt{x})^{2}=(5)^{2} \\ x= \pm 5 & \text { sides. } & x=25 \end{array}$	$\begin{aligned} a+b & =c \quad \begin{array}{c} \text { Bring it over! } \\ \text { Change the Sig } \end{array} \\ a & =c-b \end{aligned}$

